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Abstract—The growing complexity of Edge Video Analytics
(EVA) facilitates new kind of intelligent applications, but cre-
ates challenges in real-time inference serving systems. State-
of-the-art (SOTA) scheduling systems optimize global workload
distributions for heterogeneous devices but often suffer from
extended scheduling cycles, leading to sub-optimal processing
in rapidly changing Edge environments. Local Reinforcement
Learning (RL) enables quick adjustments between cycles but
faces scalability, knowledge integration, and adaptability issues.
Thus, we propose FCPO, which combines Continual RL (CRL)
with Federated RL (FRL) to address these challenges. This
integration dynamically adjusts inference batch sizes, input
resolutions, and multi-threading during pre- and post-processing.
CRL allows agents to learn from changing Markov Decision
Processes, capturing dynamic environmental variations, while
FRL improves generalization and convergence speed by inte-
grating experiences across inference models. FCPO combines
these via an agent-specific aggregation scheme and a diversity-
aware experience buffer. Experiments on a real-world EVA
testbed showed over 5x improvement in effective throughput,
60% reduced latency, and 20% faster convergence with up to
10x less memory consumption compared to SOTA RL-based
approaches.

Index Terms—Federated Reinforcement Learning, Continual
Learning, Edge Computing, Dynamic Batching, Visual Analytics

I. INTRODUCTION

Video Analytics (VA) is widely regarded as a “killer appli-
cation” in Edge Computing [I]. High-demand applications ,
such as traffic monitoring [2] and surveillance [3], generate
substantial data volumes that require local processing to en-
hance data privacy, minimize network latency and improve
throughput [4]. VA services are typically organized into a
series of tasks as pipelines. To optimize latency and throughput
of the whole pipeline, approaches such as [4]-[8] periodically
perform scheduling to balance the workloads assigned to the
edge server and devices, avoiding performance bottlenecks.

Once assigned, each device performs its assigned tasks until
the next scheduling period, ranging from a few minutes [4] to
3 hrs [3]. We identify that dynamic real-time edge applications
require continual performance optimization at the device level
during this period due to multiple factors. These factors in-
clude fluctuating network conditions, workload variability, and
the heterogeneity of computing devices (Figure 1), spanning a
range of x86-64 servers and arch64 embedded computers with
diverse computational capacities and resource availability [4].
Thus, on-device fast-paced and constant local optimization is
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Fig. 1: A VA scenario with collaborating Edge devices. Various sizes, shapes,
and colors illustrate architecture, resource, and workload heterogeneity.

essential to meet real-time requirements, as their violations
can cause catastrophic failures and unsafe behavior [9].

To this end, several studies have proposed Reinforcement
Learning (RL)-based approaches, adaptively learning near-
optimal solutions at the edge device [10]-[13]. However, they
have yet to overcome four major limitations.

(1) Offline training. Although RL can learn in real-time from
newly obtained experiences, this capability is often limited by
computational complexity (particularly in Deep RL) and con-
cerns over reliability and stability [14]. For example, QoSAS
[11], BCEdge [10], and DDQN [12] rely on offline-trained
RL agents, utilizing only the inference phase at runtime. This
approach restricts the real-time adaptability of RL, and these
pre-trained agents may experience performance degradation,
due to large environmental variations at the Edge.

(2) Poor Scalability. In existing approaches [10]-[12]!, adap-
tation is achieved by deploying one RL agent per device. Since
these agents rely on offline training, they must continually col-
lect and store experiences as data for retraining. As the number
of inference models increases, the storage and time required
for training also grow, with each iteration processing more
data samples. This rapidly becomes a scalability bottleneck,
restricting efficiency in large-scale deployments.

(3) Learning Divergence. In current approaches [10]-[12]!,
when a new environment is encountered, a base agent is
typically cloned and then the clone is tasked with optimization
for that environment. Although these agents begin with similar
initial understanding, their learning diverges over time due
to experience heterogeneity. This makes it difficult for these
agents to have a consistent unified policy across collaborating
edge devices and the server.

(4) Cold start. Newly cloned agents often face significant cold
start challenges when they are deployed in a new environment.
These challenges occur because the agents are initialized with

'MagicPipe [13] does not provide an algorithm on how to scale up when
new devices or models are introduced into the cluster.
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TABLE I: Comparisons to the state-of-the-art RL-based systems

Syst Online Scala- Knowledge Warm
ystem Learning bility Fusion Start
QoSAS [11] X X X X
BCEdge [10] X X X Last*
MagicPipe [13] v X X X
DDQN [12] X X X Last*
FCPO v v v v

¥ Last training checkpoint.

pre-trained parameters or policies from a previous setting. The
severity of these cold start issues is closely related to the differ-
ences between the old and new environments. When there are
substantial disparities in state distributions, action dynamics,
or reward structures, agents typically experience a significant
decline in performance. This drop in performance results from
the mismatch between the agent’s learned representations and
the unfamiliar conditions it encounters in the new environment.

System Overview and Contributions. To address these
limitations of the existing works, we propose FCPO - a
system based on real-time Federated Continual Reinforcement
Learning for Policy Optimization of pipeline configuration
in latency-constrained EVA. In FCPO, each lightweight in-
ference agent (iAgent) is specifically designed to manage
and optimize a DNN inference model, rather than an entire
device, fostering scalability even as the number of models
grows. Each iAgent adapts dynamically to heterogeneous
environments by selecting among three actions: (a) inference
batch size selection, which balances throughput and latency;
(b) input resolution selection, optimizing between accuracy
and computational load; and (c) multi-thread processing, en-
abling efficient parallelism based on current resource avail-
ability. These actions represent complex and context-aware
resource allocation strategies, allowing iAgents to continually
adjust to changing conditions and workloads in real-time. Our
iAgent-based approach allows for finer-grained control over
resource allocations and enhances adaptability across varying
models and workloads. To overcome the other limitations,
we propose a novel learning method, Federated Continual
Reinforcement Learning (FCRL), which integrates Continual
Reinforcement Learning (CRL) with Federated Reinforcement
Learning (FRL). Recent work has provided a foundational
framework for CRL, defining a stable approach for contin-
ually training agents in dynamic environments [15]. Building
on this, we incorporate FRL [16] to facilitate collaborative
learning across agents in heterogeneous, non-I1ID environments
with varying state transitions. To our knowledge, this is the
first implementation of CRL combined with FRL in the novel
FCRL framework for real-time systems.

Overall, our contributions and benefits to existing works
are shown in Table I and summarized as follows:

« We propose FCPO, a scalable system for optimizing real-
time performance of VA inference pipelines in large-scale
edge systems by enabling fine-grained control over batch
size, resolution, and multi-thread processing.

o We introduce FCRL, combining Federated and Continual
Reinforcement Learning, to enable adaptive, collaborative
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Fig. 2: Motivation for adaptation and dynamic batching.

learning in dynamic, non-iid edge environments for VA.
We develop an agent-specific aggregation scheme that com-
bines shared backbone knowledge with heterogeneous ac-
tions, handling large action spaces and environment-specific
optimizations efficiently.

We conduct real-world experiments, which show over 5x
improvement in effective throughput, 60% reduced latency,
and 20% faster convergence with up to 10x less memory
consumption, demonstrating FCPO’s superiority in manag-
ing complex, large-scale VA tasks with enhanced adaptabil-
ity compared to SOTA RL-based approaches.

II. PRELIMINARIES AND MOTIVATIONS
A. Design Goals

Similar to prior works [10]-[13], FCPO aims to achieve
high throughput and low latency to ensure efficient, real-time
processing of VA tasks. In addition to these objectives, we
emphasize minimizing convergence speed, decision latency,
training latency, and optimizing resource utilization. Real-time
decision-making and adaptive learning processes can impose
significant demands on hardware resources, especially in con-
strained edge environments. Therefore, FCPO is designed
to rapidly converge on optimal configurations with minimal
decision and training latency, while keeping resource usage
as low as possible to maximize the available capacity for
workloads. This approach ensures that resources are primarily
dedicated to VA processing rather than overhead, achieving
both efficiency and responsiveness in large-scale deployments.

B. Action Space for Quick Adaptation

In the highly dynamic edge environment, fluctuating net-
work conditions and variable workloads, as shown in Fig-
ure 2a, introduce significant challenges to maintaining con-
sistent performance. These factors necessitate continual opti-
mization to adapt to rapid changes in real-time as they can
lead to degraded throughput, increased latency, and inefficient
resource use. To this end, we consider three methods with
different throughput trade-offs as actions for the agent, which
are described in the next sections.

Dynamic Batched Inference. Batched inference has long
been regarded an effective method to increase the inference
throughput of DNN models [ 7], as it efficiently leverages the
parallel capabilities of GPUs. By dynamically adjusting the
batch size, it is possible to achieve desirable throughput levels.
Figure 2b demonstrates the impact of batching on throughput
and end-to-end latency within an EVA traffic monitoring
pipeline, highlighting two key insights: (1) Larger batch sizes



improve throughput via vector-level parallelism but increase
latency, as the first query in a batch must wait for the last. (2)
Smaller batch sizes reduce individual inference latency but can
create pipeline bottlenecks, causing higher end-to-end latency,
as seen with batch sizes of 1 and 2. Thus, while dynamic
batching can be an effective tool for balancing throughput and
latency, careful tuning is crucial for optimization.

Resolution Adjustments. Resizing input data (e.g., video
frames) to improve throughput has been widely studied [18]-
[20]. However, traditional DNNs often lack support for vari-
able input sizes, and using multiple inference engines can
lead to excessive resource demands. FCPO addresses this with
frame packing, combining smaller images into a single frame
for inference models. A similar method is proposed by Peng
et al. [20] and Gokarn et al. [19].

Multi-thread Processing. DNN-based query processing
comprises three steps: (1) pre-processing (e.g., normalization),
(2) DNN inference, and (3) post-processing (e.g., decoding and
filtering). While pre- and post-processing cannot be batched,
throughput can be improved via concurrency, using multi-
ple threads to prevent bottlenecks. However, on resource-
limited embedded devices, excessive threading may degrade
performance due to resource contention. Carefully managing
thread allocation is crucial to balance concurrency benefits
with resource efficiency, avoiding system overload.

C. Challenges for Continual Adaptation in Real-Time

Continual learning of RL agents in a real-world environ-
ment, rather than relying on simulations, is critical due to the
inherent variability of edge scenarios. Simulations often fail
to capture the whole stochastic nature of network conditions,
hardware heterogeneity, and workload variability. However,
achieving continual learning with real-time training presents
four critical challenges not yet overcome by existing works:

1) Exponential Action Combinations: The combination of
actions required for optimal performance in edge environments
creates an exponential search space, making naive random
exploration infeasible. In FCPO, the agent must dynamically
adjust the batch size, resolution, and multi-threading level.
Selecting the optimal batch while simultaneously tuning frame
packing and thread counts results in a vast array of configura-
tions, each affecting latency, throughput, and resource usage.
Efficient exploration strategies are thus essential to identify
the best action combinations without excessive sampling.

2) Learning Overhead: Real-time learning introduces
computational overhead which can create contention for crit-
ical resources such as CPU cycles, memory bandwidth, and
GPU processing power, potentially leading to slower inference
times and degraded performance.

3) Non-IID Experiences: Each agent’s experience is
unique, as it encounters distinct sequences of states and
actions due to varied exploration paths, workload patterns,
and environmental conditions. This non-iid nature complicates
knowledge aggregation and fusion across agents, as they
evolve based on distinct data distributions.

4) Heterogeneous Action Spaces: Due to device and model
heterogeneity, resource constraints may limit viable actions
(e.g., batch size or resolution choices), making the action
spaces inconsistent across agents.

The next section covers our approach to address these
challenges, which is essential to ensure that RL agents can
effectively learn in real-world edge systems, maintaining per-
formance and reliability across diverse and variable conditions.

III. REAL-TIME INFERENCE SERVING SYSTEM
A. System Overview

Figure 3a shows the components for controlling the real-
time edge VA system. FCPO follows a popular setup for edge
computing systems, consisting of multiple clusters [5]. Each
cluster consists of a local server and multiple heterogeneous
edge devices, connected to various data sources (e.g., real-
time cameras). The local server runs the System Controller
responsible for model allocation, system-wide scheduling, and
executing Agent-Specific FL Aggregation (subsection IV-D).
In this paper, we focus on perform continual local real-time
optimization and leverage [4] for global periodic scheduling.

Both the server and devices are capable of hosting VA
inference models. Due to their heterogeneous resource avail-
ability, the number of models hosted at each machine varies
significantly. Each host device is controlled by a single Device
Control, responsible for running the models according to the
scheduled provided by System Controller and collecting device
run-time statistics. In BCEdge [10] this component contains
the intelligent agent, while in FCPO, this component is re-
sponsible for real-time metrics collection and FL participation.
Communication from System Controller to the workload is
coordinated through the Device Control, ensuring fair and
sequential execution of system changes.

Each Workload Model is piggybacked with a light-weight
Continual RL (CRL) agent, called iAgent, in charge of orga-
nizing the structure between processing threads and collects
workload metrics. iAgent constantly observes the model’s
performance against its environment and adaptively learns the
optimal configuration to improve the performance.

The final component in the system is a distributed Metric
Database (DB) for storing real-time metrics that are used to
evaluate the system and for updating allocation strategies.

B. System Procedure

Figure 3b illustrates the architecture of FCPO, a sys-
tem based on Federated Continual Reinforcement Learning
(FCRL) for continual Policy Optimization in real-world edge
environments. The workflow of the components in FCPO
follows a typical FL procedure.

At each round’s start, the System Controller distributes
the aggregated Global Model (GM) to all iAgents. This helps
iAgents optimize their respective inference models, particu-
larly assisting newly deployed models that might otherwise
face cold starts.

Each iAgent interacts with its specific environment
using CRL to efficiency adapt itself to the environment.
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iAgent Federated Continual Reinforcement learning (FCRL).

Fig. 3: System-wide FCPO architecture overview.

@ Once local training is complete, selected iAgents up-
load the adapted model parameters to the server.

The System Controller aggregates the local updates
into a new GM. As introduced in section I, the knowledge
learned by one agent can greatly benefit the others. FCPO
employs Federated Learning to combine the collective knowl-
edge learned by agents. To avoid overgeneralization causing
each agent to lose the environment-specific knowledge, FCPO
is equipped with an Agent-Specific FL Aggregation algorithm.

In the next section, we go into the details of FCPO by first
introducing the architecture of iAgent in subsection IV-A and
how its learning can be formalized into a Markov Decision
Process (MDP) in subsection IV-B. Then we introduce the
novel FCRL method to allow effective continual adaptation in
subsection IV-C and IV-D.

IV. FEDERATED CONTINUAL POLICY OPTIMIZATION
A. iAgent’s Model Architecture

The model architecture of iAgent is shown in Figure 4.
It takes in an input of size 8, which includes the current
actions, the arrival rate, and the number of drops from the
full queue. It comprises a backbone, one value head, and
three action heads. The backbone is implemented with two
linear layers, featuring a hidden dimension of 64 and an output
dimension of 48. These layers serve as a feature extractor for
the subsequent layers, aiming to capture the overall dynamics
of the environment. The value head is designed as a single
linear layer to estimate the cumulative reward.

While all three actions are closely related, choosing all
three actions together using a single action head results in a
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Fig. 4: Arch1tecture of iAgent.

large exploration space for this head and consequently slower
convergence. Thus, to generate the probability distribution for
action sampling, the network has one linear layer for each
action, followed by a softmax activation function. To facilitate
feature sharing and alternating optimization among the heads,
we take inspiration from Faster R-CNN model architecture
with cascading outputs [21].

Particularly, the first action head utilizes the backbone’s
features to determine the resolution. Its output is then concate-
nated into the backbone features to determine the actions of the
other two heads. This approach enables the agent to learn the
dependencies among the actions. For instance, if the request
rate is static and the resolution is lowered to accommodate two
images in a frame, the throughput is doubled and the batch
size can be reduced. Additionally, lowering the resolution
increases the preprocessing rate, resulting in the necessity for
an additional preprocessing thread to avoid bottlenecks.

B. Markov Decision Process of iAgent

We describe the MDP of iAgent as consisting of states
S, actions A, a transition probability distribution P, and a
reward function R. Every step n € N, iAgent collects the state
and chooses an action. Multiple steps within an episode are
used to optimize the behavior in the next episode, as shown
in Figure 4 and Figure 5. iAgent learns the environment
defined through the MDP and identifies an optimal policy
m* = argmax,Q*(s,a),, that maximizes the cumulative ex-
pected reward for a state-action-pair at step n. The optimal
Q-function Q*(s,a), defines the reward by choosing action
a € A in state s € S, which is approximated through a neural
network.

State Space S. A state space captures the characteristics
of an environment. At the beginning of a step, the agent
constructs a state s, € S as a vector of size 8, s, € S C R3. The
most important state metric is the request rate, as it determines
the throughput the agent needs to achieve. Other metrics guide
the agent in its decision-making process, such as the current
resolution configuration, batch size, and thread configuration.
The current queue sizes between processing steps are also
incorporated to help the agent identify processing bottlenecks.
While these inputs may not be strictly necessary for a well-
trained agent, they can significantly improve the learning
speed, which is crucial for online-training. The last state
value is the end-to-end Service Level Objectives (SLO) of the
pipeline, it is used to give the agent context for what kind of
processing speed is required.

Action Space A. An action refers to the behavior chosen
by the agent for the current step n. For iAgent, each action



a, € A C N3 is represented by a three-tuple:
[RES(resolution), BS(batch size), MT (multi-thread))

All actions can be changed instantly at runtime, and have a
direct impact on inference throughput. The optimal choice is to
increase a,[1] = BS, as decreasing the resolution may decrease
accuracy, and adding threads allocates additional resources.
Nevertheless, RES and MT may be necessary to handle a high
workload with low latency.

Transition Probability Distribution P. A transition proba-
bility py,., € P defines how likely an agent will transition from
current state s, to the next state s,;; based on the chosen
action a,. ps,., = P(sa—1|Sn,a,) captures the environment
dynamics as well as the effects of an action.

Reward Function R. The reward function returns a scalar
value r,, rating the last action, and is designed to directly
reflect the design goals by subtracting latency and an oversize
penalty from the throughput. These values are aggregated
as the cumulated expected reward E[Z”CZ‘O Y'rn), where ry is
the reward calculated after step n. The reward is normalized
between -1 and 1, resulting in the following equation for R
with /at as the estimated weighted average of the local latency:

a[l]n

1 5 T hroughput,
RequestRate,

rp= — %

(1
2 RequestRate,

—Glat—o

Compared to BCEdge [10] we do not directly include the
model SLO into the reward function, because (a) iAgent should
learn the relationship of throughput and latency and (b) each
models deadline within a pipeline is ambiguous. However,
the oversize penalty is increased by the number of requests
that exceed the local SLO. This way the reward is indirectly
decreased for not meeting SLOs.
Finally, the optimal reward function can be written as:
Q" (s,a)n = Eypep(s, )[rn+ymax Q™ (s,a)n1] (2)

dp—1

where 7 is the discount factor to balance between the imme-
diate and future rewards.

C. Continual Reinforcement Learning (CRL)

As long as dynamic changes follow a consistent pattern,
they can be represented within a single MDP. For exam-
ple, over short intervals, unstable network bandwidth can be
captured by a single probability distribution [22]. However,
averaging this distribution over longer periods may lead to
imprecision, as edge deployments often face varying patterns.

CRL allows agents to be defined across multiple environ-
ments represented by different MDPs—a challenge for tradi-
tional RL definitions. For instance, permanent road construc-
tion alters content dynamics in traffic monitoring, impacting
the transition probability distribution and changing the MDP. If
the MDP shifts during or after training, traditional RL agents,
such as those offline-trained in existing methods [10]-[13],
cannot adapt to the new environment.

Based on the notation on Abel et al. [15] the state space
S is called observations O, which combined with actions A
create histories & € H of sequential pairs h = opag...ona, for

iAgent

Multi-thread an,[2]

LActions
Q-value

Fig. 5: The training framework of FCPO’s iAgent(Figure 4).

0, € 0 and a, € A. An agent is represented as a function A €
A:H — A(A), with A representing a probability distribution
over a countable set. The environment is a function e € E :
H x A — A(O) that can capture the MDP (subsection IV-B).
The learning process is described as agents searching for the
set of optimal agents A* C A, and the notation A -, A, refers
to A1 C A converging to Ay C A by observing e. Proof that
the presented iAgent is a valid CRL problem is presented in
the Supplementary Material.

Extension to FCRL. The formulation of CRL can be
extended to FCRL by defining it over multiple instances.
Within every round of federated learning, the model sent
from server to instance i should be interpreted as the basis
Agp for the local CRL problem (e;,v;,A,Ap). The aggregated
model parameters serve as a basis that is not optimal without
personalization and quickly adapted with continual learning.

This notation captures how every iAgent solves it’s personal
CRL problem based on shared general knowledge. While
an instance can encounter different environments and perfor-
mance evaluations, the set of all agents A is identical. In FCPO
the performance function is also identical (Viy,i> : vi; = v;,),
forming a special case of FCRL problem where instances
target an identical goal.

Loss Architecture. The loss calculated based on the steps
in the current episode, using the ratio of explored to exploited
actions. Besides policy and value loss, iAgent receives a direct
penalty for actions 1 (resolution) and 3 (multi-threading),
which is visualized in Figure 5. The total loss [ is determined
as:

I=l, 11+ - %Z(an[0]+an[2}) 3)

n

where o is a hyperparameter to adjust the penalty. The policy
loss [, is the average of the clipped ratio € - ratio, balancing
exploration, multiplied with the Generalized Advantage Es-
timation to learn transition probability distribution [23]. The
exponential of the negative reward is included as a factor to
provide more direct feedback of the total reward value and
fast continual adaptation to slight changes.

I, = %Zmin (e -ratio, ratio) - (GAE+e~ ") 4)
n
The mean squared error mse() between the estimated Q-
values and the collected rewards forms the value loss /,. By
optimizing this, iAgent learns policies with better performance.
This estimation is also used for sharing knowledge of the
overall environment trends across federated agents.

I, = mse(Q(s,a)n, ) )



Algorithm 1: Agent-specific Aggregation - Server

Algorithm 2: Agent-specific Aggregation - Client

1 Function Main ():

2 select and await selected clients
3 for [ € base_network layers do
4 | agg_layers.add())

5 for m € client models M do

for [ € {layer,layer,layer 4, } do
| agg_layers[/] += mll]

8 for 1 € {layerq), layer ), layeryp) } do
9 factor = (LOSS; — —-—LOSS‘A;‘OTAL ) -
10 agg_layers[l] += factor-m|l]

1 LOSS_TOTAL +=LOSS;

12 agg_layers /= |M|+1

13 for m € client models M do

14 for I € {layer,,layery,layer .} do
15 | m[l]load(agg_layers|l])

16 | send m to client

17| base_network.load(agg_layers)

The reward function is complex, and adding more compo-
nents makes it harder to optimize and balance the parameters
effectively. To address this, the loss penalty serves as a
way to ensure the batch size is optimized first, while other
actions are only used when the improvement in the primary
objectives is substantial enough to justify their trade-offs. The
secondary goals of accuracy and resource consumption are
more challenging to evaluate from a local perspective, without
labels to assess accuracy and resource consumption that may
seem acceptable to one task but is detrimental to others.

Overhead Minimization. Deploying CRL on embedded
devices introduces overhead that can reduce the performance
of the VA system. Training neural networks is particularly
challenging due to limited resource availability. To address
this, iAgents employ a loss gate that executes back-propagation
only when the improvement is significant. If the loss mag-
nitude falls below a specified threshold, the network update
is minimal and can be skipped. However, to prevent the
learning process from stagnating in sub-optimal positions, the
FL update is always executed, as described in the next section.

Between RL updates, storing experiences increases memory
consumption—a critical issue on embedded devices. Each
agent maintains its experiences in a fixed-sized buffer, which
imposes an upper limit on memory usage. This issue is even
more pronounced in RL systems performing offline updates
over extended periods, as they require large buffers to collect
numerous experiences. For example, for each update, BCEdge
[10] and DDQN [12] store over 5000 experiences.

In FCPO, online CRL training allows the buffer to remain
small and to be emptied frequently, significantly reducing
memory overhead. Additionally, iAgent’s buffer is populated
based on experience diversity to maximize training efficiency.
After each forward pass, diversity d is calculated as follows:

d = oDy (Sn;Sn—1,--+,50) + B - Dxr.(T) (6)

where D), is the Mahalanobis distance between the new
state and stored states, which emphasizes novelty, and Dgy,
is the KL-Divergence of policy distributions, which captures

1 Function Main ():

2 Migear = local_update(mypeq); send mypeq to server

3 while await (mgggreqarea) from server do

4 continue inference

5 L history_states += state; history_actions += action

POLICY = m(history_states)

LOss = neg_log_likelihood(POLICY, history_actions)
Maggregared-freeze(layery, layers, layer,qie)
Maggregated-update(LOSS); iAgent.load(myggregated)

deviations in action spaces. This lightweight buffer design
eliminates sequential dependencies between experiences and
improves their IID distribution. Thus, iAgents do not require
an additional replay buffer of past episodes like BCEdge [10].

D. Federated Reinforcement Learning (FRL)

Knowledge Aggregation. As shown in algorithm 1, each
federated update step start by selecting clients for aggregation.
Next, local weights and experiences are collected after a last
local update (line 2). During aggregation, only the backbones
and Q-value head are aggregated equally (lines 6-7, 12). These
layers are designed to extract features from a state and provide
a general understanding of the environment that remains
consistent across agents. Equal aggregation ensures that all
agents contribute equally to this shared knowledge, preventing
any single agent from dominating the model’s understanding.
A weighted aggregation, in contrast, could prioritize local
information from specific agents, leading to imbalances and
potentially diminishing the performance of other agents.

On the other hand, action heads are aggregated using a
loss-based aggregation across all agents with the same output
dimensions (lines 8-11). It is essential to store different action
heads based on their dimensions since weights for selecting
batch sizes of 1-64 or 1-16 are not directly comparable.

After this, the updated network is transferred back to the
agents, replacing the current network (line 17). During this
process, the agents do not perform any local updates, and any
experiences collected during this time are discarded. The latest
aggregated network, which includes the updated action heads,
is then stored on the server (line 18).

Action Head Fine-Tuning. Using the aggregated layers di-
rectly to make decisions can lead to unpredictable performance
because the output from the backbone is not aligned with the
action heads. To address this, we fine-tune the model with
experiences collected locally at each agent, focusing solely on
the policy loss while freezing the value head and backbone
(algorithm 2 lines 6-9). This fine-tuning step, is performed
on the edge devices, as it is faster than a regular update, and
therefore should not introduce additional overhead. Also fine-
tuning at the server would require sending local experiences
to the server, adding additional network overhead.

Large-Scale FL. FCPO combines hierarchical FL with
client selection to minimize network overhead caused by the
frequent exchange of model parameters. The Edge inherently
represents a hierarchical network structure where edge devices
are co-located with cameras and connect to a local cluster
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edge server. This edge server can then communicate with other
clusters or the cloud to distribute workload.

This topology inherently forms clusters of devices, which
can be leveraged to reduce the number of participating devices.
Additionally, client selection that considers memory, com-
puting availability, and data heterogeneity as FedHybrid [24]
reduces the risk of stragglers. The considerations of FedHybrid
align well with FCPOs efforts to reduce device overhead and
prioritizing diversity. To further lower network overhead, we
extend the utility function proposed in [24] by incorporating
bandwidth (normalized to 10Mbit/s) for client ¢ as follows:

TotalUtil(c) = Util(c) (1) % \/Bandwidth(c) /10 (7)

The System Controller w1ll determine the participation of
a device, considering the utility sum of all agents in a single
device based on ToralUtil(c). A chosen Device Control makes
the final decision, which of the local iAgents will participate
in the next FL round based on memory availability.

Taking these factors into account, FCPO carries out fine-
grained client selection within each cluster. Once multiple
aggregation rounds are completed within a cluster, the updates
are shared with other clusters through the cloud, as proposed
in [25]. This step follows the same aggregation process used
at the edge server and the same number of local rounds.

V. EVALUATION

In our evaluation, we assess FCPO on a real-world testbed

and aim to answer the following questions:

* Q1 (V-B1): Does FCPO outperform other Edge VA systems
with and without local optimization?

* Q2 (V-B2): How fast and reliable is FCPQOs FL procedure?

* Q3 (V-B3): Can FCPO adapt to strict real-time SLOs?

* Q4 (V-B4): Does FCPO enable measurable warm starts?

* Q5 (V-B5): How much overhead does FCPO incur on the
devices? And does that prohibit scalability?

* Q6 (V-Cl): Can FCPO adapt quickly in drastically chang-
ing environments? And if so, how does CRL help?

* Q7 (V-C2): How does FRL benefit learning convergence?

A. Experimental Methodology

1) Real-world Testbed: We evaluate FCPO with an edge
server with 4 consumer-grade GPU NVIDIA RTX 3090 and 12
heterogeneous devices consisting of 3 Jetson Xavier AGXs, 5
Jetson Xavier NXs, 3 Jetson Orin Nanos and an ”On-Premise”
desktop PC equipped with a GTX 1080Ti. We emulate real-
world network bandwidth conditions using the data transfer
benchmark of an Irish 5G dataset [206].

TABLE II: Summary of FCPO’s implementation and training parameters.

Parameters Description
=10 Number of steps in each episode
=107 Learning rate of iAgent
v,6,¢0=1.1,10,2 Weights to calculate the reward (Eq. 1)
Y,A =0.1 Weights of reward temporal relation (Eq. 2 + GAE)
w=0.2 Weight of loss penalty (Eq. 3)
=09 Clip value in policy loss (Eq. 4)
o, =0.5 Weights to calculate experience diversity (Eq. 6)

2) System Implementation: FCPO’s implementation is
build based on PipelineScheduler [27] in C++ and adds over
5,000 new lines of code to the system. We deploy each
inference model within a container and leverage a microservice
architecture to harness its inherent flexibility and robustness,
with Docker serving as the container runtime. However, FCPO
can also operate in a monolithic architecture with minimal
modification. We implement and run the Controller as a
separate process on the server to supervise the operation of
the entire cluster. Since the focus of FCPO is continual local
adaptation, we utilize [4] to make global scheduling decisions
at the Controller, distributing the workload across devices
every 5 minutes. On each edge device and the server where
inference containers are hosted, we deploy a Device Agent to
manage and monitor the containers.

Within each container, we deploy each inference model in
a single process. We use OpenCV (4.8.1) for image (video
frame) pre- and post-processing tasks. Different inference
engines, such as TensorRT, ONNX, TF Lite, and OpenVINO,
are supported in an easy plug-and-play manner. For the exper-
iments in this paper, we use TensorRT (8.4.3.1) to load and
run inference models. As described in section IV, we attach
a lightweight iAgent (implemented with LibTorch) to each
inference process to optimize its operation. The parameters
used for the experiments are detailed in Table II. The code
base can be applied to various visual inference tasks requiring
little modification.

3) Edge VA Workloads: As shown in Figure 6, we use
traffic monitoring, building surveillance, and audience analysis
as three distinct representative edge VA applications to eval-
uate FCPO. We set a strict end-to-end SLO of 250ms for all
pipelines to reflect the prompt nature of Edge VA applications
and services. For data, we collected a total of 23 continual 4-
hour videos from real-world public online streams to represent
23 data sources with diverse object distributions and content
dynamics. During the experiments, the videos are streamed at
15 FPS to simulate real-time video sources across devices.

We also leverage the vehicle tracking data from the 2022 Al
City Challenge [28] to evaluate iAgent, which was unsuper-
visedly trained on our collected dataset, in its ability to adapt
to a new domain Figure 10. We use 9 6-min videos at 10 FPS.

4) Baselines: For all experiments, we leverage Octoplnf [4]
to distribute the workload across multiple devices every 5
minutes. Our goal is to demonstrate that combining infrequent
global scheduling with continual local optimization provided
by FCPO can significantly improve performance.

e BCEdge [10] represents state-of-the-art RL-based
throughput optimization. We selected BCEdge as a baseline
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Fig. 7: End-to-end system performance comparisons over 4h.

because, to the best of our knowledge, it is the most recent
work on this topic and exhibits the most desirable qualities
among the SOTAs compared in Table I. We deploy one
agent per device, which was trained offline using profiling
results, and is updated every 7000 experiences. To prevent
catastrophic failures by excessive GPU resource requests, we
limit the concurrency and shared memory actions to only two
configurations each.

o Octoplnf [4] serves as a global scheduling baseline with-
out local optimizations, but global parameter settings.

o Distream [5] is a popular baseline without any detailed
runtime optimization of parameters like batch size.

5) Metrics: Every reported metric is the average value over
three runs. We validate FCPO by comparing its end-to-end
performance against baselines using the following:

e End-to-End Latency. This is the time elapsed from the
generation of a video frame at the source to the moment its
inference results arrive at the designated sink, including all
network, queuing, and processing latencies. It measures the
responsiveness of the system in handling video streams.

o Throughput. Our scenarios involve pipelines that analyze
attributes of objects-of-interest using inference models. There-
fore, we define throughput as the total number of objects that
are analyzed by the pipelines within one second. However,
results that arrive late—where their end-to-end latency exceeds
their SLO (set at 250ms)—are no longer useful. Thus, we also
measure the effective throughput, which is the total number
of inference results that arrive on time within one second. This
number highlights the degree of real-time processing.

To prove the scalability and real-time capability of FCPO,
we analyze the overhead incurred by iAgent using the follow-
ing metrics for RL and system resources:

o Convergence Speed. Convergence refers to the state of
accurately approximating optimal decision. Its speed in-
dicates how quickly iAgent learns the environment.

e Memory Consumption. Memory allocated to iAgent.

e Power Consumption. iAgent’s power consumption on
edge devices.

e Decision Latency. Time taken to choose a single action.
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Fig. 8: Learning performance with averaged loss and rewards.
o Training Latency. This is the time required to update the
network on-device locally without FL.

B. Results

1) Processing Throughput and Inference Latency Im-
provements: Figure 7 shows the overall throughput perfor-
mance of FCPO. FCPO significantly outperforms the base-
lines in terms of throughput and effective throughput.
FCPO implements local continual optimization on top of Oc-
topInf’s global workload distribution. By continually adapting
to the environment via actions such as batch size adjustment
FCPO manages to output nearly 2 times the throughput and
better latency (Figure 7d) most of the time, which proves
the validity of our framework. However, this is not the case
for BCEdge, which also employs a local adaptation approach
on top of Octoplnf (Figure 7a and c). By adjusting batch
sizes, compared to Distream, BCEdge reduces the number of
queue drops and thus achieves higher throughput. However,
only a small portion of this is effective throughput because
its average latency is significantly worse (Figure 7d). While
increasing throughput, batched inference raises the latency of
each inference request [18]. The effect is compounded over
multiple stages of the pipeline, resulting in nearly 2.5 times
higher latency.

We further shed light on the root cause by analyzing Fig-
ure 8. The reward and loss of FCPO show gradual improve-
ment and importantly noticeable fluctuation as it continually
tries to adapt to the ever-changing environment dynamics.
Contrary, BCEdge is trained offline with profiling data and its
reward quickly converges because profiling data is obviously
less diverse in workload patterns and cannot capture all the
conditions of devices as well as the interactions among various
applications (processes) running on the devices.

Another cause is that there is only one BCEdge agent
on each device to make decisions for all workloads, which
becomes the bottleneck. Contrary, FCPO has one light-weight
iAgent for each workload increasing the timeliness of its
decision. We will further discuss the scalability shortly.

2) Federated Learning Latency: The FL latencies in Fig-
ure 7b show that the average FL round completes in approx-
imately 4-8 seconds. This aligns with findings from a recent
study [29], where an FL round using FedAvg [30] over 5G
networks took 43 seconds with 6 nodes and a model size of
approximately 3MB. In contrast, the iAgent model is only
53KB in size, though it is aggregated across more nodes.
Despite this, the FL optimization in FCPO achieves effi-
cient round-trip times—from sending weights to receiving the
aggregated model. Because local iAgents continue operating
during this period, FL latency does not hinder real-time pro-
cessing. Furthermore, on-device fine-tuning after aggregation
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patterns.

introduces negligible overhead—Iess than 300ms across all
devices—which is still below the highest update latency shown
in Figure lle. Thus, iAgent can reliably support continual
adaptation in real-world deployments without compromising
responsiveness.

3) Adaptation to Stricter Real-Time Requirements: We
evaluate iAgent’s ability to adapt to real-time constraints by
tightening the SLO from 250ms to 200ms and 100ms, respec-
tively. As shown in Figure 9, both Distream and OctopInf
experience a severe drop in performance. This is because
they make periodic scheduling decisions based solely on
average workload statistics from the previous period. Under
stricter SLOs, the system dynamics become significantly more
volatile, requiring immediate and responsive adaptation.

By incorporating the end-to-end SLO as a state variable,
iAgent learns to associate tighter latency requirements with
appropriate system configurations, enabling it to respond
more effectively to increased urgency and maintain better
performance. In contrast, although BCEdge incorporates SLO
information into its reward function, it fails to capture the
diversity of environment patterns, often leading to suboptimal
decisions. As a result, it accumulates only minor rewards
(Figure 8), which are insufficient to drive effective learning.

4) Analysis of Warm Starts: In real-world scenarios, en-
vironmental changes can occur both gradually and abruptly.
To evaluate FCPQ’s ability to achieve a “warm start” even
during abrupt changes, we replace the data sources with videos
from the Al City Challenge dataset [28], which exhibits out-
of-distribution workload patterns. As shown in Figure 10,
the trained iAgent maintains high throughput throughout the
experiment. We then increase the difficulty by evaluating a
blank iAgent (cold start). Although it initially exhibits low
throughput, it quickly adapts to the new environment and, by
the end of the experiment, achieves performance only slightly
below that of the warm-start iAgent. In contrast, BCEdge
performs worse than it did on the original dataset and fails
to adapt to the new environment. These results demonstrate
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that iAgent not only adapts effectively to previously unseen
conditions but also supports both warm and cold start sce-
narios, making it highly suitable for deployment in dynamic,
real-world settings.

5) Analysis of On-Device Agent Overhead: To prove the
scalability of FCPO show the overhead comparisons in Fig-
ure 11. Regarding memory consumption, all FCPO’s iAgents
combined take less than 3% of the total memory allocated
for the experiments at both the Edge devices and the server.
This is owing to its lightweight structure and small fixed-
size experience buffer. On the other hand, even though there
is only one BCEdge agent per device, it takes significantly
more memory (up to 10x) due to a bulky structure and a
large experience buffer (7000 experiences). The BCEdge agent
is deeper and wider compared to iAgent. It also requires an
additional branch to analyze the state value, which results in
more intermediate layers, which in turn increases memory
consumption. Moreover, since BCEdge only needs to train
offline the server, we disable it at the Edge devices to save
resources for pipeline processing. Otherwise, the memory
consumption at the edge is expected to be even higher.

We collect edge power consumption metrics through Jtop
and calculate the agent overhead by subtracting the workload
power consumption. On average, BCEdge consumes more than
twice as much energy as FCPO on each edge device. This
highlights how much more expensive an inference of BCEdge
is on limited resources and how efficient iAgent operates.

Regarding latencies, on each of the edge devices, BCEdge
takes 1.5 —2x more time to make a decision due to its more
complex model. The training time of FCPO can safely execute
until the next decision time after one second even on low-end
devices like Orin Nano. This result shows, how the light-
weight design of FCPO is capable of real-time workload
configuration. The update latencies of BCEdge are collected
offline, as it is not designed for online learning. Running it‘s
training at the same time of inference will result in worse
performance due to co-location interference [4].

C. Ablation Study

To provide further insights into FCPO, we conduct an
ablation study, where we remove two heads and use a single
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head for all three actions in the FCPO-reduced version. As
shown in Figure 12, removing certain aspects of FCPO leads
to significantly worse performance. Specifically, deploying iA-
gent at the server making optimizations every 5 minutes results
in less responsive updates, leading to suboptimal decisions.
On the other hand, FCPO-reduced, while still able to perform
updates, struggles to understand the action space, resulting
in low rewards and high latency. These findings support our
argument that a single head introduces a highly complex action
space, where iAgent fails to effectively explore its decisions.

1) Benefits of Continual Learning on Performance: To
capture the performance impact of including CRL in the
design, we concatenate multiple 5-minute video segments
from different sources, causing the underlying distributions
to change drastically. We evaluate two frained instances of
FCPO at the same checkpoint over 50 minutes of traffic mon-
itoring at 3 sources. One agent is frozen without CRL, while
the other is allowed to learn continually using CRL. Figure 13
shows that, although the frozen agent is unable to adapt,
it still makes near-optimal decisions because it was trained
beforehand. However, it is outperformed by the learning agent
throughout the entire experiment. The CRL agent shows better
adaptation to workload spikes, but unfamiliar scenes like 40
to 45 minutes can still present a challenge. While both agents
follow similar patterns and have comparable performances at
each context switch, the CRL agent can quickly adapt to the
new context and perform significantly better until the next
switch. This proves the effectiveness of CRL in adapting to
changing environments.

2) Convergence Speed with Federated Learning: Fig-
ure 14 illustrates the convergence speed, at varying numbers
of pipelines used during FRL training in the traffic pipeline.
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Fig. 14: Average loss and reward with different FRL instance counts.
Results are averaged across all running models and all pa-
rameters are identical across configurations. In the single-
pipeline scenario (1) federated aggregation is disabled, the
other configurations aggregate every second episode.

As the number of pipelines—and consequently iA-
gents—increases, both reward and the rate of loss reduction
improve, with the most significant gains observed between
4 and 8 pipelines. This suggests that learning scales effec-
tively with more federated agents, though diminishing returns
emerge at higher numbers. This effect may reflect an upper
limit on achievable improvements, as loss and reward converge
quickly. Each additional pipeline introduces slight variations in
dynamics, increasing the complexity of optimizing the global
model. These variations are also the cause of learning diver-
gence. Instead of diverging, FRL combines these differences
into a more general scene understanding and smooth the
learning curves, resulting in less performance fluctuations.

VI. DISCUSSION
A. Feasibility and Scalability in Real-world Environments

In this section, we further examine the feasibility and scala-
bility of FCPO in real-world environments, where sensitivity
to system overhead, large-scale collaborative learning, and
heterogeneity in applications and devices are key challenges.

Overheads. From the experimental results, each device,
on average, incurs less than 3% total memory usage, less
than 1.7% total power consumption, and approximately
53KB of network overhead every 300s for continual adapta-
tion—resulting in more than a 13% improvement in through-
put. These overheads are negligible, thanks to our lightweight
design of iAgent and efficient Agent-specific Federated Learn-
ing (FL) aggregation mechanism. This minimal resource foot-
print is crucial for practical real-world deployments, where
computational and energy budgets are constrained.

Large-scale Collaboration. In dense Edge networks,
vanilla Federated Learning (FL)—where all agents participate
in every round—is typically infeasible due to the significant
network and computation overhead imposed on the centralized
server, which becomes a bottleneck. To address this, FCPO is
designed to selectively involve only a subset of agents with the
most valuable experiences in each round, thereby maintaining
constant system complexity. Meanwhile, the remaining agents
continue to perform local optimizations independently.

Application Heterogeneity. The state and action spaces
of FCPO are tailored for VA applications. However, its
adaptation mechanism—Federated Continual Reinforcement
Learning—is general and applicable to a broad range of
tasks. FCPO learns the environment state and selects actions
such as batching, multi-threading, and resolution adjustment
to maximize throughput. Similar strategies are widely used



in machine learning, including for time-series prediction and
natural language processing. For example, batching has proven
effective for RNNs [31], [32] and Transformers [33], [34], both
of which benefit from parallel processing. This suggests FCPO
can be extended to support such applications efficiently.

Hardware and Software Heterogeneity. A key challenge
to real-world scalability lies in the heterogeneous mix of
hardware and software platforms from different manufacturers.
FCPO is built around generalizable actions whose effective-
ness can be consistently evaluated across major platforms.
While batched inference is a relatively recent innovation
from the deep learning era—unlike established techniques like
resolution adjustment and multi-threading—it is now widely
supported. Major hardware such as GPUs [4], CPUs [35], [36],
TPUs, and NPUs [37], as well as inference engines like Ten-
sorRT [4], [18], OpenVINO [35], [36], and TensorFlow [38&],
offer native batching support, making it a scalable optimization
across diverse environments.

B. Future Work

Besides further valuation and fine-tuning to evaluate the
performance on other real-time systems, we outline directions
for future work aimed at advancing the deployment of FCPO
in increasingly complex and dynamic real-time edge scenarios.

Decentralized and Hybrid Federated Learning (FL). We
aim to enable even greater scalability through decentralized
or hybrid (FL), where the aggregation of iAgents could occur
within networking hardware or on edge devices. While this
concept has been explored in prior work, it has not been con-
sidered for real-time inference. Additionally, further investiga-
tion is needed to fully understand the trade-offs and overheads
associated with such decentralized aggregation strategies.

Global Reward Learning. As application, hardware, and
software heterogeneity grows, designing the reward function
through manual hyperparameter tuning (see Appendix B)
may become increasingly impractical. To address this, we
plan to integrate fast local optimization with global reward
learning. This approach allows the reward function to self-
adapt, reducing manual effort while potentially achieving
better performance than hand-designed optimization functions.

C. Threats to Validity

Experiment scenarios. Despite our best effort, selected
videos and scenarios may not fully capture the real-world vari-
ability, which could limit the generalization of our findings due
to potential data bias. To mitigate this issue and strengthen the
robustness of our conclusions, we collected 23 4-hour videos
in different 3 domains—traffic, building surveillance, and au-
dience analysis—with diverse workload patterns (Figure 2).
We also incorporated the 2022 AI City Challenge Dataset
[28], particularly Track 1: Multi-Camera Vehicle Tracking, to
challenge iAgent’s learning mechanism on out-of-distribution
data. Experimental results from subsubsection V-B4 show that
iAgent can swiftly adapt to the new dataset.

Multiple treatment. Another challenge we face is the risk
of multiple treatment interference, as several changes have

been introduced—some of which are fundamental. This makes
it difficult to isolate the effects of each individual adjustment.
To address this, we conduct ablation studies to evaluate each
proposed technique separately. The results indicate that each
method contributes positively to overall performance, although
accurately quantifying the specific impact remains challenging.

VII. RELATED WORK

Edge Workload Distribution. For real-time inference,
Zhao et al. [39] propose a reinforcement learning-based
scheme that enhances throughput by selectively offloading
parts of a model that cannot fully run on-device. Works
like [4]-[6], [8] focus on balancing VA pipelines between edge
devices and servers, by considering network conditions, work-
load changes, or energy consumption. CoEdge [40], combines
DNN performance estimation with an inference scheduler for
containerized co-execution and batching. Guan et al. [41]
propose federated scheduling for DAG Tasks as in Figure 6
in mixed-critically systems. As solutions differ in resource
centralization, execution flexibility, and throughput gains; self-
learning approaches like FCPO can adapt accordingly.

Real-Time Reinforcement Learning (RL). Many areas
like robotics rely on real-time on-device RL for modern
applications under resource constraints [42]. To improve the
performance of these applications, Liu et al. [43] present a
new formulation for deadline-safe RL execution and Shirvani
et al. [44] balance speed, accuracy, and energy dynamically.
However, FCPO is too light-weight to benefit from these for
significant performance improvements.

Edge Federated Learning (FL) faces unique challenges
in heterogeneous edge environments. Lightweight agents can
be achieved using symmetric conversion modules or early
exits [45]. Zhang et al. [46] address bottleneck devices with a
3-stage client selection process, while hierarchical FL clusters
agents into groups [47]. Asynchronous FL eliminates rounds
to handle timing challenges, but suffers from inconsistent and
biased updates. Hu et al. [48] address this through branch
models, which are then aggregated into the global model.
FCPO encounters much heterogeneity at runtime, benefiting
from advanced FL approaches.

Edge Continual Learning (CL). Deng et al. [49] propose
semi-supervised on-device CL for classification, while Yu
et al. [50] explore lightweight unsupervised clustering using
hyperdimensional computing. Adapting to embedded device
constraints, Kwon et al. [51] present a hardware-aware meta
CL system. These FL. and CL advancements highlight their
feasibility in Edge environments. However, applying CL in
reinforcement learning, a distinct learning paradigm, remains
an open question requiring evaluation through FCPO.

VIII. CONCLUSION

In this paper, we present FCPO, an optimization system
that combines FRL and CRL to enhance the throughput of
real-time Edge Visual Analytics (VA) inference. The dynamics
of unstable network conditions and content variations provide



significant opportunities for continual configuration adapta-
tion. Each step in a VA pipeline is locally optimized by an
iAgent, which dynamically adjusts input resolution, batch size,
and multi-thread configuration. The experimental results show
FCPO significantly outperforms recent baselines.

FCPO highlights the importance of local optimization in
real-time edge systems, improving the speed and efficiency
of machine learning tasks while ensuring better resource
utilization. This results in more sustainable and cost-effective
computing solutions, marking a step forward in efficient real-
time distributed inference on embedded devices.

REPRODUCIBILITY

The implementation used for the evaluations is provided
as an open-source project on GitHub', together with detailed
documentation to help reproduce the experimental results.
Moreover, this code is archived on Zenodo? for long-term
preservation. Though the data is not made publicly avail-
able due to ownership and data privacy concerns, interested
researchers and developers can still recreate nearly identical
datasets for academic purposes with our provided scripts.
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