2023 IEEE International Conference on Pervasive Computing and Communications (PerCom) | 978-1-6654-5378-3/23/$31.00 ©2023 IEEE | DOI: 10.1109/PERCOM56429.2023.10099298

2023 IEEE International Conference on Pervasive Computing and Communications (PerCom)

PreActo: Efficient Cross-

Camera Object Tracking

System in Video Analytics Edge Computing

Thanh-Tung Nguyen Si Young Jang*
School of Computing, KAIST School of Computing, KAIST
Daejeon, South Korea Daejeon, South Korea
tungnt@kaist.ac.kr sy.jang @kaist.ac.kr

Abstract—Cross-camera real-time object tracking is one of
the important, yet challenging applications of video analytics in
edge computing environments. To provide accurate and efficient
real-time tracking, a tracking target’s future movements need
to be predicted. Particularly, the destination camera and travel
time of the target object are to be identified so that tracking
duties can be handover-ed seamlessly. In this paper, we propose
a collaborative cross-camera tracking system, called PreActo,
with two key features: (1) ResNet-based trajectory learning to
exploit the rich spatio-temporal information embedded within
objects’ moving patterns, which has not been utilized by the
existing literature, and (2) collaboration between the edge server
and the edge device for real-time trajectory prediction and
tracking handover. To prove the validity of our proposed system,
we evaluate PreActo on a video dataset leveraging real-world
trajectories. Evaluation results show that the proposed system
reduces up to 7x the number of processed frames for handover,
with 2x lower latency while providing 1.5x tracking precision
improvement compared to the state-of-the-art.

Index Terms—Edge Computing, Machine Learning, Object
Tracking, Trajectory learning

I. INTRODUCTION

With an ever-increasing number of cameras deployed in
urban cities [1], real-time video analytics is definitely an
important application at the network edge. It provides various
video analytic services such as object detection [2], [3], [4], re-
identification [5], [6] and cross-camera object tracking [7], [8],
[9], [10], [11]. Among those, tracking objects (e.g., humans
or vehicles) across multiple geo-distributed video feeds is
challenging as it requires sophisticated edge server-camera
collaboration and camera coordination. Regarding the former,
it can be largely divided into two categories: edge server-
driven approach [12], [13], where the server analyzes video
feeds collected from all geo-distributed cameras; and edge
device-driven approach [14], where powerful smart Al-enabled
cameras filter out large portions of the videos before uploading
to the server. Both of these approaches are prone to creating a
bottleneck at either the edge server or the cameras, leading to
the failure of real-time tracking tasks. Thus, it is essential that
the computation workload is effectively divided via sophisti-
cated server-camera collaboration. Moreover, since tracking
involves multiple cameras, camera coordination is equally

*Currently affiliated with Nokia Bell Labs, Cambridge, UK.
Currently affiliated with Netlight, Munich, Germany.
Corresponding Author

Boyan Kostadinov' Dongman Lee!
School of Computing, KAIST School of Computing, KAIST
Daejeon, South Korea Daejeon, South Korea

boyanyk @kaist.ac.kr dlee @kaist.ac.kr

important. Specifically, when a tracking object is leaving the
field-of-view (FOV) of camera A, a destination camera B and
the time at which the object arrives at camera B need to be
identified so that the handover of the tracking duty from A to
B can be done seamlessly. A simple approach, mentioned as
a baseline in [9], is to have all cameras search their incoming
video feeds until the object is found. However, this brute force
approach results in low efficiency and scalability. A more
sophisticated line of approaches considers the spatio-temporal
correlations [15] among the cameras. The underlying insight is
that there exist physical correlations between certain pairs of
cameras that can be leveraged to improve tracking efficiency
[16]. For instance, Spatula [9] analyzes the distributions of past
entries and exits to determine the next camera candidates and
arrival time. Kestrel [10] and WatchDog [11] exploit temporal
filters obtained from analyzing historical data to determine
which frames to be processed during real-time tracking. We
argue that existing works have not utilized the rich spatio-
temporal information naturally embedded within an object’s
mobility patterns, which can reveal its moving speed and the
direction it is heading towards.

In this paper, we propose PreActo, an efficient cross-camera
object tracking system. PreActo utilizes a lightweight 1-D
ResNet model [17] extracting spatio-temporal features from
object trajectories to predict the camera target (where) and
the transition time (when) to arrive at the target. PreActo
was named after predict and react, meaning our system with
an ability to make accurate predictions can efficiently react
to various tracking events. PreActo can be divided into 2
phases. (1) Firstly, during the offline phase, deep spatial &
temporal trajectory learning is performed at the edge server.
The training data is composed of trajectories of objects within
the tracking camera’s FOV. (2) Secondly, during the online
phase, to avoid computation bottlenecks, the workload is
evenly distributed between the server and cameras. Instead
of streaming raw footage to the server, each camera runs an
object detection model [2] and only sends cropped bounding
boxes to the server for re-identification (re-ID) [5], [18], which
is a computationally demanding task. The coordinates of each
object within the camera’s FOV are recorded as a time series.
Once the object departs from its FOV, the camera inputs the
recorded time series into the pretrained models to predict
the next camera candidates and the transition time; and then

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 11,2025 at 13:56:29 UTC from IEEE Xplore. Restrictions apply.

978-1-6654-5378-3/23/$31.00 ©2023 IEEE 101

2023 IEEE International Conference on Pervasive Computing and Communications (PerCom)

notifies the candidate with the highest confidence score of
the time the target may arrive. At the specified time, the
target candidate requests the server for re-ID to identify if the
object is indeed found. Otherwise, it handovers to the second
candidate in the list in a similar manner, and so on.

To the best of our knowledge, there exist no large-scale
video datasets publicly available'. Instead, we leverage an
18-camera dataset generated by Carla [25] with trace-driven
human mobility patterns and camera locations reproducing
a real-world environment, which is described in detail in
Subsection VI-A. This approach is similar to that of [11],
[9]. Our results show that as a whole, the system ensures that
tracking is only performed on necessary cameras at the correct
frames, leading to 7x and 2x improvement in terms of the
number of processed frames and latency, respectively. The key
contributions of our work are as follows:

e We leverage an FOV-trajectory-based deep-learning
mechanism using lightweight ResNet models to predict
when and where to activate edge cameras. The results
show that a target object is mostly found to be the first
and second candidate cameras in 93% and 6% of the
cases, respectively.

« We evaluate our system using a video dataset reproducing
a real-world environment (particularly, Peking Univer-
sity’s campus). The proposed system doubles the tracking
application’s performance in terms of on-time tracking
result delivery compared to the state-of-the-art.

II. RELATED WORK
A. Object Trajectory Prediction

Object trajectory prediction can be considered a time-series
forecasting task. In [26], Alahi et al. introduced the early
work for an influential type of model, called Social LSTM,
which leveraged the LSTM model with a Social Pooling
layer to learn and predict human trajectories. Since then,
several similar approaches using increasingly more complex
learning models [27], [28], [29], [30] have been proposed.
It can be seen that the common approach from these works
is using large recurrent models (e.g., encoder-decoder LTSM,
Transformer) with complex mechanisms including multi-head
attention and multi-modal data embedding in order to predict
the trajectories of objects. We argue that these models are
not suitable for the scenario under consideration due to the
following reasons. First and foremost, to predict the detailed
trajectories of objects, the computational complexity and re-
source demands of these models are beyond what edge devices
can handle, which is crucial to real-time tracking. Secondly,
these models focus on predicting only at most dozens of
points into the future. Once produced, the output could be
leveraged as input for further prediction repeatedly until the
tracked object is seen by the next camera. However, this would
require several more times computation resources and cause

I'DukeMTMC [19] and SLP [20] are not publicly available. Virat [21] and
LPW [22] are small-scaled. WNMF’s videos are too short. Re-ID datasets
including Market1501 [23] and RPIField [24] only contain cropped images.

unbearable delay. Thus, we argue that the trajectory prediction
task can be reduced to only predicting where and when a
tracked object shows up next in the camera network, which
would vastly reduce the size of the prediction model and its
time consumption, allowing the task to be achieved in real-
time. We propose to use lightweight ResNet-based models
that can be operated on small embedded devices but still can
accurately predict the next cameras as well as the transition
time to reach those cameras. The details of our models are
given in Subsection I'V-C.

B. Cross-camera tracking systems

WatchDog [11] builds a cross-camera vehicle tracking sys-
tem with powerful geo-distributed cameras. This work man-
ages to run tracking in real-time by running a lightweight and
less re-ID technique for a crowded intersection and delaying
the heavy and more accurate re-ID operations until there is
an empty intersection to correctly identify the vehicle. Kestrel
[10] tracks suspicious vehicles in the road camera network by
utilizing cheap visual features for associating objects seen in
different cameras (re-ID). Both WatchDog and Kestrel present
a solid method for optimizing the Re-ID pipeline. However,
their tracking algorithms desire much improvement. Firstly,
they rely only on the moving directions of the objects to
infer to next camera target. In reality, this may not be the
case, especially for dense camera networks. Secondly, in terms
of transition time from one camera to another, they both
set fixed lower and upper limits based on historical data
without considering each individual object’s characteristics.
We argue that the two above-mentioned aspects are the most
important in cross-camera tracking and they could be better
determined by analyzing the mobility patterns of objects.
Caesar [8] proposes a cross-camera activity recognition system
that requires tracking through multiple cameras. However,
next camera prediction and travel time estimation were not
discussed. The authors instead only cite Kestrel [10] as their
method for cross-camera tracking.

Spatula [9] analyzes a multi-camera object tracking dataset
to generate spatio-temporal correlations between cameras,
which depends on the statistical distributions of exit-entry
samples. They then exploit the spatio-temporal correlations
through a statistical approach to reduce the search space and
devise a forward and backward search upon missing targets.
However, we believe this approach has the following inher-
ent drawbacks. Firstly, the performance of Spatula heavily
depends on manually-set temporal and spatial thresholds to
filter the search space. It can be found in the original paper
that there are noticeable discrepancies between the results of
different thresholds. Secondly, Spatula falls short on tracking
precision due to wrong travel time predictions as they do not
consider the mobility patterns of the object under tracking.
For instance, given two objects leaving camera A for camera
B with different speeds and mobility patterns, Spatula would
behave in the exact same way for both cases. This weakness
can also be seen in Kestrel and WatchDog.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 11,2025 at 13:56:29 UTC from IEEE Xplore. Restrictions apply.

102

2023 IEEE International Conference on Pervasive Computing and Communications (PerCom)

_______________________________________] Edge Server :

! ' Offline ! oo tEETTEmmmmmmmmmm————————— | -
et ' (8) Re-ID offloading queue |<—
: Trajectory Light-weight | ; ,—L—’_ :

; Learnin ResNet training : (9) Re-ID model LR = Re-ID result '

i . (10) 1"index": "16" #-1 if not found

‘Handover ! Dizvilee 2 'R'e' iDrequest ~ -7 k
Device 1 (e.g., Jetson Nano) o . \ "frame": [1,
(@ e tt) (6) Re-ID offloading]
l(3 3) next camera (nc, e.g., (3-4) transition time ('4) (%) Handover Handllng]|(2 -2) Boundlng box croppmg| :"query
Cam?2) pred|ct|0n (tt) estimation !

(2-2) Bounding box
croDDInq

(2-1) Object class, | |
coordinate extraction

| (1) Object detectlon & Tracking I
)

frame

Fig. 1: The overall architecture of our proposed cross-camera object tracking system, PreActo. When an object disappears,
Device 1 uses the object’s extracted trajectory to predict the next target (nc) and the transition time (#f). This information and
the last seen image of the object are forwarded to the predicted next target, Device 2.

In this paper, we propose a tracking system that leverages
deep learning models to predict the destination and the arrival
time of an object accurately. We will further discuss our
advantages over Kestrel, WatchDog, and Kestrel along with
experiment results in Section VI.

III. SYSTEM OVERVIEW

Fig. 1 shows the overall architecture of PreActo to support
cross-camera object tracking, which essentially associates ob-
jects seen in one camera to ones in another. The challenge
is that there are many cameras, each with numerous frames,
which makes the spatio-temporal search space become expo-
nentially larger as time goes. It is impossible to achieve real-
time cross-camera tracking without efficiently establishing a
spatio-temporal model across the camera network. We roughly
divided PreActo’s operation into two phases offline and online.

A. Offline Phase

To establish spatio-temporal relationships amongst cameras,
the edge server uses a historical video dataset recorded from
multiple edge cameras during the offline phase and conducts
the following operations:

1) Firstly, in order to train models that can predict the desti-
nation that a target object is traveling to and approximate
their arrival time, we first need to construct and label
the traces. Each labeled trace consists of a sequence of
coordinates of bounding box centers (or Points), denoted

s (x,y), the next destination camera, denoted as nc, on
which a target object appears next, and its transition time,
denoted as tt, to reach the destination (Subsection IV-A).
Secondly, we train two lightweight models to predict
the destination camera and the object’s transition time.
We devise a lightweight 1-D convolutional ResNet-based
classification model, for next camera prediction and a re-
gression version of the same model for transition time es-
timation using the same labeled trace (Subsection IV-C).

B. Online Phase

A multiple object tracking pipeline typically consists of two
components: (1) an object detection model to find objects (e.g.,

2)

people) in a frame, and a re-identification, or re-ID, model
to determine if the objects-of-interest are still present in the
current frame. Running the full pipeline is a challenge for
low-capability edge devices. The reason is that these devices
are low on available memory for computation, which cannot
support both object detection and re-ID models. Even if they
do, the latency is unbearable. For instance, we run an object
detection model Yolo-v5 [4] and a re-ID model OSNet [31]
on Nvidia Jetson Nano, which take 193 ms and 560 ms for a
single frame, respectively. To achieve real-time cross-camera
tracking with high precision, it is crucial that the workload is
evenly divided between the server and edge cameras to avoid
computation bottlenecks. Thus, during the online phase, the
real-time operation of PreActo is designed as followings:

1) Each camera uses a state-of-the-art object detector to
detect objects in the frame. Then, cropped bounding
boxes of all object-of-interests are transmitted to the
edge server for re-ID periodically (re-ID offload). The
re-ID index is then returned to the camera, which starts
a tracking operation (Subsection V-A).

After finding the target object, a camera tracks the object.
Once its leaves the camera’s FOV, the camera inputs a
sequence of coordinates sampled from obtained traces
into pretrained models for predicting a list of next camera
candidates and the transition time, as shown in Fig. 1.
The next camera with the highest confidence score is
chosen as the candidate camera, nc. A handover message,
which includes a cropped image of the object-of-interest
and the time it will take to arrive (¢t), is sent to the
candidate (e.g., Fig. 1I’s Device 2). After ¢t has passed,
the candidate sends a non-periodic re-ID request to the
server to confirm that the object-of-interest is found in
its frame. Upon false predictions, a span-out recovery
is performed to search for the target in the rest of the
candidates (Subsection V-B).

In Section IV, we explain in detail how the proposed
system realizes cross-camera handover by modeling the spatio-
temporal relationship amongst video traces. In Section V, we
take a closer look into the object tracking pipeline containing

2)

3)

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 11,2025 at 13:56:29 UTC from IEEE Xplore. Restrictions apply.

103

2023 IEEE International Conference on Pervasive Computing and Communications (PerCom)

object detection, re-ID, tracking, and handover operations.

IV. SPATIAL & TEMPORAL LOCALITY DRIVEN
TRAJECTORY LEARNING

This section explains the extraction of learnable traces and
the learning mechanisms for spatial and temporal knowledge
between cameras. This information is then adopted by the
cameras at run-time.

A. Trajectory Labeling

In PreActo, the center coordinates (x,y) of the bounding
box containing each detected object in a camera’s FOV are
recorded as a sequence, or a time series, using frame indices
as timestamps. We call this sequence a Trajectory (1'r) as it
depicts a full set of coordinate points of a target object within
a camera’s FOV, from the first appearance until disappearance.
The transition time is obtained by subtracting the time of the
object’s last detection in the current camera from the time
of the first appearance in the next camera. We denote this
trajectory-label as (Tr; : (nc,tt)) where 4, s, nc, and tt
denote the current camera id, the sequence number, the next
camera’s id, and the transition time, respectively.

B. Sampling methods

At runtime, a camera has to decide the next camera can-
didates and the transition time to such candidates. Objects’
trajectories in a camera’s view are inherently different from
one another in terms of shape and length due to mobility
patterns (e.g., walking fast v. slowly). This implies that a
camera may have to predict with traces (1'r), whose length
may not be the same as the original trajectories from the
training dataset. Such occasions may happen 1) when object
detection fails for a number of frames, 2) re-ID request is
finished late, 3) transition from the previous camera takes
longer than expected, etc.

To handle such situations, we decide to sample all trajec-
tories using three sampling methods: last, evenly distributed,
and overlapped sliding window to guarantee a uniform length
on all trajectories. We define a formal description of a trace
as follows:

Every point is composed of two coordinates: x and y.
Let P, = (xn,yn) denote a point at frame n, where
0 <z, < framewian and 0 < y,, < framepeign:. Then, a
trace T'r of length n represents the following sequence:

T’I"n = (Po,Pl,Pg,...Pn_l)

The definitions of the sampling methods are as follows:

e Last: takes the last k points from a trace. This method
aims to sample the most discriminative part of the trajec-
tory, which is related to the exiting point of the trajectory
before the object’s disappearance.

Last(Tr,]{7) = (Pn,(k), Pnf(kfl) N Pnfl)

o Evenly distributed (ED): takes k elements that are evenly
spread out in the trace [32]. This prevents regions of

* (a) Next camera
prediction

. (b) Transition time
O prediction

Fig. 2: An illustration of the ResNet network model used
for training (a) next camera prediction and (b) transition time
estimation.

higher sample density from contributing more points,
causing skewed distribution in the data.

E‘Z)(T’r’7]{7) = (Po, Pg, ce Pg*(k—1)7 Pg,,ﬁk)7 g = Ln/kJ

o overlapped sliding window (SW-0): samples k elements,
using a sliding window, starting from the first element and
until reaching the end. Similar to the linear resampling
technique [33], this returns all of the extracted samples.

SWO()(T’I“, k‘) = (Po,Pl . ~-Pk—1)

SWOn—(k+1) (T’I’, k) = (Pn—(k—l)v Pn—(k—Q) cee Pnfl)

C. Next camera and transition time predictions

As established in a significant body of works [34], [26],
[30], [35], [36], there exists spatiotemporal information em-
bedded within each trajectory that can be leveraged to predict
the future movements of an object. However, as explained in
Subsection II-A, unlike these works, we are not interested in
short-term detailed predictions of future trajectory points, but
in the next camera (where) and the time to arrive at that camera
(when), which enables seamless handovers of tracking duties
from one camera to another. Moreover, running the above-
mentioned models requires more computation capability than
edge devices can provide. Thus, in this paper, we instead lever-
age a lightweight 1D ResNet model [17] as shown in Fig. 2.
This model uses convolutional filters with 1D kernels to extract
spatiotemporal features from time series data. It is constructed
from three blocks, each of which has 3 convolutional filters.
Between the blocks, a shortcut connection is added to aid the
gradient flow. The number of channels of filters in the blocks
is {64,128,128}.

Based on the visualization in [17] and our experiments, it
can be seen that the low-level filters learn individual features
such as relative positions of the trajectory with a camera FOV
and walking stride. On the other hand, the high-level filters
learn more complex features such as the general direction,
walking style (straight lines v. contours), and average speed.
Using such features allows PreActo to accurately make the
following predictions:

Next camera prediction: To predict the next camera can-
didates (nc) for handover, we attach a softmax classification
head to the ResNet backbone. This model is trained using
categorical cross-entropy loss and an Adam optimizer with a
learning rate of 0.001. The rate is reduced when on a plateau.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 11,2025 at 13:56:29 UTC from IEEE Xplore. Restrictions apply.

104

2023 IEEE International Conference on Pervasive Computing and Communications (PerCom)

TABLE I: Performance (in frames per second) of object
detection models on Jetson Nano.

Model
FPS

Efficientdet-d0[2]
5.17

YOLOvV4 [3]

YOLOVS [4]
2.35 5

Transition time estimation: To predict the time it takes for
the pedestrian to travel, we replace the softmax layer with a
fully-connected layer (dense). This model is trained with Root
Mean Square Error (RMSE) and an Adam optimizer with a
learning rate of 0.001.

It is worth noting that the results of using the same ResNet
backbone for both predictions lead to significantly lower
results than using two separate models. We consider that
this is because they look for different sets of features such
as relative positions and directions for camera prediction;
and speed and patterns for time prediction. Moreover, each
model is remarkably lightweight and this setting causes little
computation overhead.

V. RUNTIME CROSS CAMERA TRACKING
A. Detection & Tracking

Object tracking is comprised of object detection, re-ID, and
continuous tracking of the correct re-ID index. This section
describes how these three operations are synchronized to
support timely and accurate frame processing on an edge
camera, in collaboration with the edge server.

Object Detection (line 2 in Algorithm 1) Numerous object
detection models (e.g., YOLO families [3], [4]) have been
proposed to achieve high detection precision. However, many
of them are too computationally expensive for embedded
devices such as Nvidia Jetson Nano [37]. Table I shows
benchmarking results of a variety of object detection models
using our dataset (Section VI-A). The table depicts how many
frames per second (FPS) each model can process as well as
their accuracy. The accuracy score is calculated based on the
number of correct detection relative to the ground truth in
a frame. Based on the results, we leverage the state-of-the-
art YOLOVS [4] as it provides a good balance between FPS
and accuracy. While its performance does not exceed 15 FPS,
which is considered the real-time threshold, we do not need
detection for every frame as the objects would display virtually
no change in terms of positions in consecutive frames.

Offloading re-ID (line 3 in Algorithm 1) In a crowded
scene, object detectors return multiple objects Obj,, of the
same class (e.g. person). To perform state-of-the-art deep-
learning based re-ID methods for all these objects is too
computationally intensive for embedded devices as re-ID op-
erations have to be iterating through cropped images, extract
deep features [31] from each, and then match every set of
features against the target’s features. Thus, in our system, an
edge camera sends requests with a gallery of cropped objects
to a local edge server for re-ID, as shown in Fig. 1.

Lightweight Object Tracking (lines 6-7 in Algorithm 1)
Once the exact target object index is verified, the tracker com-
pares the following consecutive frames. The Tracker validates

Algorithm 1: Operation of PreActo on camera

Input: videostream, sm
1 while frame f; in videostream do

2 Objy, < DETECTION (f;, det_threshold)

3 REQUEST-REID (Obj,,)

4 TRACKING:

5 if no missing then

6 TRACKER.UPDATE(Obj praz(idz) -cOOTdinates)

7 | Tr ~ Objrrac(ide)-coordinates

8 else

9 sm_Tr < sm(T'r)

10 nc_list < PREDICT-NC(sm_1'r)

11 tt_list < PREDICT-TT(sm_T'r)

12 outO fViewTimer—=1

13 if outO fViewTimer < O then

14 ne « ne_list.pop()

15 HANDOVER-MSG(dest = nc, HO_Obj,
nc_list, tt_list)

16 DEACTIVATE

17 HANDOVER-HANDLING:

18 RECV-HANDOVER-MSG(HO_Obj, nc_list, tt_list)
19 REQUEST-REID (HO_Obj)

20 tt < tt_list.pop()

21 WAIT(tt)

22 if not found then

23 START(Recovery_timer)

24 if Recovery_timer < 0 then

nc < nc_list.pop()
HANDOVER-MSG(dest = nc, HO_Obj,
nc_list, tt_list)

25
26

two things. Firstly, it initializes new coordinate positions for
a newly found target. Second, it checks if a target is still in
the following frame. A target is regarded as missing if its
previously registered coordinate is no longer in correlation
with a couple of frames.

Camera prediction and transition time estimation (lines
10, 11 in Algorithm 1) Whenever a tracked object obj is
missing from its view, a camera collects coordinates of P;,
the center of its detection bounding box, into a trace 1r, of
length [, where 0 < ¢ < [. This sequence only contains the
coordinates starting from the time the object enters the view up
to the current time slice. Then, next camera candidates nc_list
and transition time t¢_list are inferred using the models with
sampling method sm and a minimum threshold. The minimum
threshold is set to eliminate predictions that are too low for
possible transition, such as 0.1%. For next camera prediction,
a list of camera indices sorted by the confidence scores is
returned. Time prediction returns the time it would take for
the current target object to appear in each camera in the list.

B. Handover messaging & Span-out recovery

Once next camera candidates and transition time are pre-
dicted, the current camera sends the next candidate camera
nc (the most probable one in the candidate list) a message
which contains the target camera id, its transition time tt,
and the predicted candidate list and deactivates itself as the

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 11,2025 at 13:56:29 UTC from IEEE Xplore. Restrictions apply.

105

2023 IEEE International Conference on Pervasive Computing and Communications (PerCom)

(%) (=) (=) (=] (=)

s S =A A A
LgRe-ID requests - :)
T° Re-ID result I [Tracking
5 D Activation
Re-ID requests(") (®) Prediction

| Re-ID result ll

3
'Tmsg(carnz, Tp2,)
)

=00

(a) Successful
handover

To2 Re-ID request
Re-1D; result T]

3
@ msg(cam3, Tp3,iC)

Re-1D reguest
Tp3 Re-ID result P ‘ msg(cam4, Tp4,iq
s

T (b) Span-out =
Wrong. .~
rch
searc Re-ID requests
Re-ID result ﬁ
0

Tpa prediction
= == =A =A Cﬁ

Fig. 3: An example of a span-out recovery sequence

target object leaves its view (lines 14-16 in Algorithm 1). A
successful transition is shown in the middle part of Fig. 3.
In the case of a false prediction, we devise a span-out
recovery where a falsely predicted camera messages the next
probable camera in the candidate list to search for the target,
instead of alerting all cameras to search at once (lines 22-26
in Algorithm 1. This is shown in the bottom part of Fig. 3
with a wrong prediction from caml to cam2 at Tj,o. If cam?2
fails to find the target, it does a span-out search by sending a
handover message to the one with the next highest confidence
in the list nc_list, cam3 at Tj,3. The top 2 candidates cover
99% of test cases, as shown in Section VI. If the second one
is also incorrect, then the third one is queried, and so forth.

VI. EVALUATION
A. Dataset

As stated in Section I, to validate our proposed approach,
we leverage an 18-camera dataset generated by Carla [25] with
trace-driven human mobility patterns and camera locations
reproducing a real-world environment. This approach is similar
to that of [11], [9]. The mobility patterns come from Geolife
GPS trajectory dataset [38], which was collected over a period
of five years, containing millions of GPS coordinates, located
mainly in Beijing, China, and their recorded timestamps.
We extract walking trajectories within the testing scenario.
The reason we choose only pedestrian trajectories for our
experiments is that we believe they are sufficient to prove
the validity of our system. Even though our system can work
for both humans and vehicles, human tracking is significantly
more difficult. Vehicles, which generally follow specific lanes
and change their directions gradually, predict the next camera
and transition time can be done with better accuracy. We
choose the southwestern section of Peking University (PU)’s
Campus to create our experiment scenario, as shown in Fig.
4a. Using the map data downloaded from openstreetmap.org,
we are able to construct a replica of a portion of PU’s map.
Fig. 4 shows that our simulated map is near-identical to the
original map in terms of size and scale. The chosen area is

(a) OpenStreetMap snapshot (b) Simulated map

Fig. 4: Left figure (a) depicts a section of OpenStreetMap
and Right figure (b) depicts the simulated area of (a) in Carla
simulator. The sizes and scales of buildings and streets are
preserved. The red cameras are ones that track a target as
shown in Fig. 5.

Fig. 5: Snapshots taken from 3 cameras at 6 different frames.
The tracked pedestrian follows the path Cam0 — Caml —
Cam4: (a) and (b) - 60" and 141% frames of Cam0; (c) and
(d) - 9939 and 1129 frames of Caml; (e) and (f) - 1458
and 1619" frames of Cam4. Refer to the map in Fig. 4b)

most appropriate for our experiments as it contains a wide
variety of patterns and routes from one point to another on the
map, which can demonstrate the practicality of our proposed
approach. Within the selected section, we extract 35881 GPS
data points from the Geolife Dataset, which belongs to nearly
300 unique trajectories. By sampling the distributions of point-
to-point distance, walking speeds, and oriented angles of the
original trajectories, we further generate 2100 more trajectories
for generating video data for training and testing the models.

To generate the video data, we employ Carla Simulator [25].
In particular, the constructed map is imported into Carla. We
place 18 cameras around the map to cover important areas
such as halls, buildings, and pathways. Each camera records
1280 x 720 videos at 15 FPS. Moreover, Carla pedestrian
actors are generated so that at any point in time, there are
50-100 pedestrians walking inside the scenario. The length
of the dataset used in our evaluation is 18 hours. Snapshots
taken while tracking a pedestrian are shown Fig. 5. Here, the
pedestrian’s path involves Cam0, Caml, and Cam4 (refer to
the map in Fig. 4b).

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 11,2025 at 13:56:29 UTC from IEEE Xplore. Restrictions apply.

106

2023 IEEE International Conference on Pervasive Computing and Communications (PerCom)

B. On-device Memory Footprint & Latency

Unlike centralized servers, distributed edge devices are
constantly under resource constraints. Thus, to realize our
proposed scheme, it is crucial that the object detection model
YOLOVS [4], and our next camera and transition time predic-
tion models are as light and efficient as possible. To prove the
feasibility of the proposed system, we measure the memory
footprint and latency it causes on a Jetson Nano device [37],
which has a humble sum of only 4GB memory for both CPU
and GPU calculations. On each device, we load the models
into a Docker container. The measured results show that, on
average, YOLOVS inference takes almost 200 millisec process
a frame (5 FPS). This makes processing every frame unable to
meet real-time requirements. However, we believe it is possible
to reduce the processing rate to 5 FPS as objects’ appearances
change minorly in consecutive frames. Furthermore, we deploy
on each device two ResNet models to predict the next cameras
and transition time. Each of these models is tiny as it takes
up only 60MB of device memory. The weight is only 2MB,
which allows periodical updates (as shown in Fig. 1) of models
without incurring high communicational overheads. They also
work blazing fast, taking 1.6 milliseconds to make predictions
for the input of (30, 2)-shape.

C. Simulation setup

We run our simulation on a mini-server machine equipped

with Intel(R) Xeon(R) Silver 4210R CPU, 188 GB RAM, and
an Nvidia GeForce GTX 3090 GPU, using Python version
3.8.10. However, we want to note that on-device measurements
in Subsection VI-B are taken into account to make sure the
simulation is most realistic.
Model training: For training our custom ResNet models, we
use Tensorflow 2.5.0. We train the models with 500 epochs
for each camera. Re-ID is implemented using the Torchreid
[39] framework version 1.2.5’s mobile-oriented model, namely
MobileNetv2_x1_0.

D. Approaches for Comparison
We compare the following handover scheme including ours:

o Kestrel [10]: uses the moving direction of an object to
infer the next camera target. The transition time filter,
similar to the original paper, is set as [0.4t47 1.6t45],
where ¢4 is the estimated time travel from A — B. We
set t4B as the mean of instances in the historical data.

« Watchdog [11]: also uses the moving direction to infer
the next target. The transition time filter, similar to the
original paper, is set as [tAB +AB 1 where tA5 and tAB,
are the shortest and longest time taken to move from
A — B in the historical data.

o Spatula [9]: leverages historical trajectories to make
predictions for the next camera candidates and the ar-
rival time. For Spatula to function, a spatial-correlation
threshold and a temporal-correlation threshold have to be
manually set. For fairness, in this paper, we only report
the spatial and temporal thresholds of 20% and 10%,
respectively which yield the best results.

93 o
a S

B Jast
ed

SW-0

Accuracy
o
=]

[)
[

o 1 2 3 4 5 6 7 8 9
Camera

10 11 12 13 14 15 16 17

Fig. 6: Accuracy of PreActo for next camera prediction
with models using different sampling schemes: last, equally-
distributed (eq), and overlapping sliding-window (sw-o)

=
3

o ®
S o

40

Percentage

()
S

&% 1%
Others

S

First candidate Second candidate

Fig. 7: Overall accuracy of PreActo for next camera prediction.
Target objects are found to be the first and second candidate
cameras in 93% and 6% of all cases.

« PreActo: leverages both temporal and spatiotemporal in-
formation embedded within each pedestrian trajectory to
predict the next camera and the transition time accurately.

E. Simulation Results & Analysis

1) Accuracy of predictions: As next camera prediction is
a crucial part of our system, we first verify the soundness
of the models with different sampling methods (described in
Section IV-B). As shown in Fig. 6, our lightweight ResNet
models achieve high accuracy (over 90%) for all the sampling
methods. The sampling methods /ast and sw-o show superior
performance for most cameras. The reason is that last and sw-
o use the last portion of the traces as parts of their training
and inference data while ed uniformly samples the traces. The
last portion usually contains the most information about the
future direction of the pedestrians, which enables the models to
make accurate predictions. We also applied traditional machine
learning classification approaches including SVM and random
forest. However, they fail to learn meaningful features from
the trajectories and achieve low prediction accuracy (60% and
57% on average, respectively). During tracking, in the case
where the first predictions are not correct, PreActo relies on
the Span-out Recovery strategy described in Subsection V-B
to recover. Here, the object will be looked for at the second,
then the third candidates, and so on. Fig. 7 shows that the first
and second candidates account for another 93% and 6% of the
cases, which confirm the effectiveness of predictions made by
PreActo. In nearly all cases, the object will be found with at
most 2 tries.

Next, we evaluate the performances of the transition time
prediction with the results shown in Fig. 8. During handover,
early transition time prediction would result in the activation of
cameras at non-essential frames, while late prediction would
result in tracking accuracy drop and potentially losing the
targets. In Fig. 8, the x-axis shows whether the target arrives
early, on-time, or late compared to the ground truth labels, with
negative values’ signaling early arrival and positive values’

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 11,2025 at 13:56:29 UTC from IEEE Xplore. Restrictions apply.

107

2023 IEEE International Conference on Pervasive Computing and Communications (PerCom)

2000 last ed SW-0

Early

1000

Count

A0 A5 A° EAII\ A5 NS EAIIS\

Arrival Time Prediction (frames)

Fig. 8: Distribution of predicted transition time using different
sampling schemes. X-axis shows frame differences from the
ground truth.

100 Precision Recall
o 15
2
S 50 /
25 77
0
PreActo Spatula Kestrel WatchDog

Fig. 9: Ratio of processed valid frames over all processed
frames in all cameras (Precision) for different schemes.

showing late arrival. It can be seen that sw-o significantly
outperforms the two other sampling methods and last shows
the worst performance in this case. While the last portion of a
trace contains decisive information about the future direction
of a pedestrian, it may not have sufficient information about
the walking speed of the pedestrian. With ed, on the other
hand, the trace is sampled uniformly, which enables the model
to learn latent features related to the walking speed. Moreover,
with sw-0’s sliding windows, the training dataset is effectively
extended allowing the prediction model to learn even more
about the spatio-temporal relationship. However, during both
training and testing, sampling traces with sw-o method causes
significantly higher latency. Thus, fo reap the most benefits,
we train the final model using sw-o and input a series sampled
using last during the test time.

2) Tracking Precision and Recall: We now evaluate how
our predictions perform using the test dataset to prove the
efficacy of our proposed approach. We first define:

e True Positive (TP) as the number of frames in which the
tracking target is correctly identified.

e False Positive (FP) as the number of frames in which the
system tries to track but the target is not present.

e False Negative (FN) as the number of frames in which
the target is present but the system fails to track.

Thus we can define:

e Precision (%) as the number of frames in which the
tracking target is correctly identified over the total number
of frames processed by the system to track the target.
Precision = (TP+FP)

e Recall (%) as the number of frames in which the tracking
target is correctly identified over the total number of
frames the target is present in the system.

Recall = (TP+FN)

As shown in Fig. 9, our scheme outperforms all of the
existing works. Kestrel and WatchDog both rely on the moving
direction to infer the next destination. However, this is inef-
fective since pedestrians can easily change walking directions.

PreActo Spatula 1 Kestrel 100 ‘WatchDog

g
2 450 50 50 50
o}

0 0 'L kst 0
0 450 900 0 3200 6400 3200 6400 0 3200 6400

Total Overheads per Trajectory (frames)

()

b e e s T PreActo
Spatula

++ Kestrel
WatchDog

0.0

o fe

3200 6400
Total Overheads per Trajectory (frames)

(b

Fig. 10: (a) Histogram of re-ID overheads for all trajectories
(b) CDF of re-ID overheads for all trajectories.

Moreover, in real-world systems, cameras are not always
organized in well-defined grids, which makes moving direction
is even less reliable. Also, both of them cannot point out an
accurate point when the object will reappear and expect the
transition time to fall into a range. Incorrectly identifying the
next camera and transition time leads to lower TPs, higher
FPs, and FNs. Spatula applies spatio-temporal thresholds to
historical distributions to lower the numbers of cameras and
frames to be processed. However, this results in having to
process footage from several cameras that all satisfy the spatial
threshold, which unnecessarily increases the number of FPs.
While raising the spatial threshold may reduce the number of
candidate cameras, it leads to a higher possibility of losing the
target object, which raises the number of FNs. This is because
Spatula only follows the distributions and is not capable of
picking the most probable next camera for the pedestrian
target under consideration. Our system, on the other hand,
exploits the spatio-temporal relationships embedded within
the mobility patterns of objects to perform both next camera
prediction and transition time estimation accurately. As a
result, only the necessary frames at the correct camera are
processed, resulting in less computation waste.

3) Handover Overhead: While performing cross-camera
tracking, when a camera receives a handover request, it also
has to send a re-ID request to determine if the handovered
object has reappeared in its FOV at the predicted time of
handover. We consider this the Handover Overhead. To reduce
the number of re-ID requests, the only way is to select the next
camera and estimate the time of arrival accurately.

In Fig. 10a, we show the histograms of per-trajectory
total overheads incurred by the handover processes of four
schemes. Here, we can see that there are significant differ-
ences, especially between PreActo and the existing works.
These schemes suffer from very high overheads since they take
little advantage of spatio-temporal information for filtering
out the frames that need to be processed. For the sake of
clarity, we further highlight the difference between PreActo
and Spatula in Fig. 10b, which shows the CDF of the total
overheads. It can be seen that PreActo incurs nearly 90% of the

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 11,2025 at 13:56:29 UTC from IEEE Xplore. Restrictions apply.

108

2023 IEEE International Conference on Pervasive Computing and Communications (PerCom)

PreActo
I ~ Spatula

8 0.5 . § e e e Kestrel

:.l-' WatchDog

40 60 80 100
Re-ID Latency (s)

Fig. 11: CDF of all frames which have been delivered late. X
axis denotes lag relative to the ground truth.

average handover overheads under 300 frames while Spatula
does nearly 60%. The maximum overhead is 897 frames and
6294 frames for PreActo and Spatula, respectively. The reason
for this stark difference is that besides choosing more than one
camera candidate as explained earlier, Spatula also determines
the arrival time from camera A to camera B, based on the
minimum recorded transition time from A to B called fj.
As long as the distribution of transition time from A and
B is “dense” at [fo, feurrent)» Spatula will consider feyrrent
potential transition time, without taking into consideration the
trajectory itself (It is worth noting that this also the common
weakness of Kestrel and WatchDog). PreActo, on the other
hand, is able to both predict the next camera and estimate the
transition time by employing DL-model-based extraction of
spatio-temporal features from trajectories.

4) Re-ID Latency: In a cross-camera tracking system, ob-
jects disappear at one camera and after a certain amount
of time, reappear at another. Once they reappear, to ensure
tracking accuracy, the system needs to confirm their identities
with their last image captured before disappearance using re-
ID. In this context, re-ID latency refers to the time difference
between when the objects physically reappear and when their
identities are correctly confirmed. Fig. 11 shows how much
lag is incurred when the edge server delivers handover re-ID
responses to the cameras. The figure represents the relative lag
to the ground truth on the X-axis. An on-time request would
have a lag of 0, while any value larger than that signifies how
much longer it takes for the request to be completed compared
to a perfect computation. A high number of frames where the
system unnecessarily tries to look for the object results in high
re-ID latency, which in turn causes the tracking cameras’ not to
be able to recognize the handover-ed objects, leading to low
tracking accuracy and precision. We can see that PreActo’s
edge server feeds approximately 60% of the frames to the
camera with no lag, meeting the real-time requirement of our
system, and 90% of the frames were delivered with latency
lower than 5 seconds.

On the other hand, the existing systems, Spatula, Kestrel,
and WatchDog, can deliver less than 30% of the frames on
time, respectively. While it is true that Kestrel and WatchDog
can effectively reduce the re-ID latency by running a less
resource-consuming re-ID pipeline. However, as there are
many frames to process, they still suffer from high latency.

VII. FUTURE WORK & DISCUSSION

Our main plan for the future development of PreActo is
the deployment in a real-world environment. One of the

core objectives when designing PreActo is scalability. On the
one hand, this has been achieved with an efficient tracking
algorithm as presented in this paper. On the other hand, there
requires a flexible approach for the implementation of the
whole system, to which the tracking algorithm is the heart.
To realize PreActo, we first apply the modularization principle
of the microservice architecture. The full tracking pipeline is
divided and modularized into well-defined components [40].
For instance, PreActo can be divided into [RSTP Streaming
server — Encoder — Object Detector — Re-ID — Tracking
Algorithm]. This not only allows easy offloading to the server
(e.g., Re-ID), but also enables monitoring of each component
and the system as a whole for the purpose of optimization
and management. For example, a component that is causing a
bottleneck can be quickly identified and fixed without affecting
the other components. Moreover, the system can be easily
imported into an open-source platform such as Kubernetes
[41], which enables various scaling models, one of which is
horizontal scaling. Once there are new cameras to be added
to an existing functioning system, the Re-ID module can
simply be ’cloned” to increase the overall computation power.
This can be done swiftly without causing discontinuation of
service of the existing part of the system. Moreover, we
address the challenge of rotating cameras. While the physical
positions of the cameras do not change, their rotation angles
can significantly affect the next camera prediction’s accuracy.
To tackle such an issue, we plan to add the rotation angles into
the trajectories, which will be used as inputs for the prediction
models at runtime.

VIII. CONCLUSION

Object tracking is one of the challenging applications in
video analytics edge computing. Existing approaches have
either an edge server or edge cameras performing real-time
analysis using live video streams generated across multiple
cameras. We argue that the former suffers from the overhead
of handling video feeds from all the cameras while the latter
also causes a computational bottleneck at the edge cameras.
In this work, we devise a collaborative tracking system called
PreActo. Our system also leverages ResNet-based models to
extract spatio-temporal information from object trajectories.
Thus, it can accurately select the next camera and predict
transition time to minimize the number of cameras that are
active at the same time, which in turn reduces the workload
incurred on the edge server, as well as lessens the computation
overhead at edge cameras. Results show that PreActo generates
up to 7x less processed frames, 2x more on-time delivered
frames while providing 1.5x tracking precision improvement,
compared to state-of-the-art cross-camera tracking systems.

ACKNOWLEDGEMENT

This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No. 2019-0-
01126, Self-learning based Autonomic IoT Edge Computing).

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 11,2025 at 13:56:29 UTC from IEEE Xplore. Restrictions apply.

109

[1]

[2]

[3]

[4]
[5]

[6]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

2023 IEEE International Conference on Pervasive Computing and Communications (PerCom)

REFERENCES

T. Ricker, “The wus, like china, has about one surveillance
camera for every four people, says report,” Mar. 2006. [Online].
Available: https://www.theverge.com/2019/12/9/21002515/surveillance-
cameras-globally-us-china-amount-citizens

M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient
object detection,” in Proceedings of CVPR, 2020, pp. 10781-10790.
A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal
Speed and Accuracy of Object Detection,” arXiv, apr 2020. [Online].
Available: http://arxiv.org/abs/2004.10934
G. Jocher, “Yolo-v5,” 2020.
https://github.com/ultralytics/yolov5

A. Aich, M. Zheng, S. Karanam, T. Chen, A. K. Roy-Chowdhury, and
Z. Wu, “Spatio-Temporal Representation Factorization for Video-based
Person Re-Identification,” in Proceedings of ICCV, 2021, pp. 152-162.
M. Li, “Self-supervised Geometric Features Discovery via Interpretable
Attention for Vehicle Re-Identification and Beyond,” in Proceedings of
ICCV, 2021, pp. 194-204.

T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan,
“Glimpse: Continuous, real-time object recognition on mobile devices,”
in Proceedings of SenSys. ACM, 2015, pp. 155-168.

X. Liu, P. Ghosh, O. Ulutan, B. Manjunath, K. Chan, and R. Govindan,
“Caesar: cross-camera complex activity recognition,” in Proceedings of
SenSys, 2019, pp. 232-244.

S. Jain, X. Zhang, Y. Zhou, G. Ananthanarayanan, J. Jiang, Y. Shu,
P. Bahl, and J. Gonzalez, “Spatula: Efficient cross-camera video analytics
on large camera networks,” in Proceedings of SEC. 1EEE, 2020, pp.
110-124.

H. Qiu, X. Liu, S. Rallapalli, A. J. Bency, K. Chan, R. Urgaonkar,
B. Manjunath, and R. Govindan, “Kestrel: Video analytics for augmented
multi-camera vehicle tracking,” in Proceedings of IoTDI. 1EEE, 2018,
pp. 48-59.

Z.Dong, Y. Lu, G. Tong, Y. Shu, S. Wang, and W. Shi, “Watchdog: Real-
time vehicle tracking on geo-distributed edge nodes,” arXiv:2002.04597,
2020.

M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30-39, 2017.

G. Ananthanarayanan, P. Bahl, P. Bodik, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha, “Real-time video analytics: The killer
app for edge computing,” computer, vol. 50, no. 10, pp. 58-67, 2017.
“Aws deeplens,” 2022. [Online]. Available:
https://aws.amazon.com/deeplens/

H. B. Pasandi and T. Nadeem, “Collaborative intelligent cross-camera
video analytics at edge,” in Proceedings of AIChallengeloT, 11 2019,
pp. 15-18.

S. Jain, G. Ananthanarayanan, J. Jiang, Y. Shu, and J. Gonzalez, “Scaling
video analytics systems to large camera deployments,” in Proceedings
of HotMobile, 2019, pp. 9-14.

Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch
with deep neural networks: A strong baseline,” in Proceedings of IJCNN.
IEEE, 2017, pp. 1578-1585.

X. Ning, K. Gong, W. Li, and L. Zhang, “JWSAA: Joint weak saliency
and attention aware for person re-identification,” Neurocomputing, vol.
453, pp. 801-811, 2021.

M. Gou, S. Karanam, W. Liu, O. Camps, and R. J. Radke,
“Dukemtmc4reid: A large-scale multi-camera person re-identification
dataset,” in Proceedings of CVPR Workshops, 2017, pp. 10-19.

Y.-J. Cho, S.-A. Kim, J.-H. Park, K. Lee, and K.-J. Yoon, “Joint person
re-identification and camera network topology inference in multiple
cameras,” Computer Vision and Image Understanding, vol. 180, pp. 34—
46, mar 2019.

S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C.-C. Chen, J. T. Lee,
S. Mukherjee, J. K. Aggarwal, H. Lee, L. Davis, E. Swears, X. Wang,
Q. Ji, K. Reddy, M. Shah, C. Vondrick, H. Pirsiavash, D. Ramanan,
J. Yuen, A. Torralba, B. Song, A. Fong, A. Roy-Chowdhury, and
M. Desai, “A large-scale benchmark dataset for event recognition in
surveillance video,” in Proceedings of CVPR. IEEE, jun 2011, pp.
3153-3160.

G. Song, B. Leng, Y. Liu, C. Hetang, and S. Cai, “Region-Based
Quality Estimation Network for Large-Scale Person Re-Identification,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32,
no. 1, apr 2018.

[Online]. Available:

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

(34]

(35]

[36]

[37]

(38]

(39]

[40]

[41]

L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scal-
able Person Re-identification: A Benchmark,” in Proceedings of ICCV.
IEEE, dec 2015, pp. 1116-1124.

M. Zheng, S. Karanam, and R. J. Radke, “RPIfield: A New Dataset
for Temporally Evaluating Person Re-identification,” in Proceedings of
CVPR Workshops. 1EEE, jun 2018, pp. 1974-19742.

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the Ist
Annual Conference on Robot Learning, 2017, pp. 1-16.

A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social LSTM: Human trajectory prediction in crowded
spaces,” in Proceedings of CVPR, 2016, pp. 961-971.

N. Deo and M. M. Trivedi, “Convolutional social pooling for vehicle
trajectory prediction,” in CVPR Workshops, 2018, pp. 1549-1557.

K. Messaoud, I. Yahiaoui, A. Verroust-Blondet, and F. Nashashibi,
“Attention Based Vehicle Trajectory Prediction,” IEEE T-1V, vol. 6, no. 1,
pp. 175-185, 2021.

H. Xue, D. Q. Huynh, and M. Reynolds, “SS-LSTM: A Hierarchical
LSTM Model for Pedestrian Trajectory Prediction,” in Proceedings of
WACV, 2018, pp. 1186-1194.

X. Song, K. Chen, J. Sun, B. Hou, Y. Cui, B. Zhang, G. Xiong, and
Z. Wang, “Pedestrian Trajectory Prediction Based on Deep Convolu-
tional LSTM Network,” IEEE T-ITS, vol. 22, no. 6, pp. 3285-3302,
2021.

K. Zhou, Y. Yang, A. Cavallaro, and T. Xiang, “Omni-scale feature
learning for person re-identification,” in Proceedings of ICCV, 2019,
pp. 3702-3712.

B. T. Morris and M. M. Trivedi, “Learning and classification of trajec-
tories in dynamic scenes: A general framework for live video analysis,”
in Proceedings of AVVS, 2008, pp. 154-161.

B. Morris and M. Trivedi, “Learning, Modeling, and Classification of
Vehicle Track Patterns from Live Video,” IEEE T-ITS, vol. 9, no. 3, pp.
425-437, sep 2008.

H. Xue, D. Q. Huynh, and M. Reynolds, “A Location-Velocity-Temporal
Attention LSTM Model for Pedestrian Trajectory Prediction,” IEEE
Access, vol. 8, pp. 44 576-44 589, 2020.

C. Yu, X. Ma, J. Ren, H. Zhao, and Y. Shuai, “Spatio-Temporal
Graph Transformer Networks for Pedestrian Trajectory Prediction,” in
Proceedings of ECCV, 2020, pp. 125-141.

P. Zhang, W. Ouyang, P. Zhang, J. Xue, and N. Zheng, “SR-LSTM:
State refinement for Istm towards pedestrian trajectory prediction,” in
Proceedings of CVPR, 2019, pp. 12077-12086.
“Jetson nano,” 2022. [Online].
https://developer.nvidia.com/embedded/jetson-nano
Y. Zheng, Y. Chen, Q. Li, X. Xie, and W. Y. Ma, “Understanding
transportation modes based on GPS data for web applications,” ACM
Transactions on the Web, vol. 4, no. 1, pp. 1-36, 2010.

K. Zhou and T. Xiang, “Torchreid: A library for deep learning person
re-identification in pytorch,” arXiv:1910.10093, 2019.

S. Y. Jang, B. Kostadinov, and D. Lee, “Microservice-based Edge Device
Architecture for Video Analytics,” in Proceedings of SEC, 2021, pp.
165-177.

“Kubernetes,” 2014. [Online]. Available: https://kubernetes.io/

Available:

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 11,2025 at 13:56:29 UTC from IEEE Xplore. Restrictions apply.

110

