
OctoFedS:엣지에서객체검출을위한스플릿컴퓨팅연합학습시스템
Bich-Ngoc Doan, Thanh-Tung Nguyen,이동만

한국과학기술원전산학부

{ngocdb160900, tungnt, dlee}@kaist.ac.kr

OctoFedS: A Federated Split Learning System for Object Detection at the Edge
Bich-Ngoc Doan, Thanh-Tung Nguyen, Dongman Lee

School of Computing, KAIST

Abstract
The large amount of data generated continuously by user devices at the Edge of the network can be leveraged to further

improve state-of-the-art deep learning models. However, this practice presents new challenges in terms of data privacy. In this
paper, we design OctoFedS, a federated split learning system that adopted Federated Learning and Split Computing to train
object detection models without exposing data to privacy threats. Our experiments with model YOLOv1 using the PascalVOC
dataset in distributed settings proved the validity of our approach while still achieving mean Average Precision of 0.66 (mAP).

1. Introduction and Related Work

In recent years, the amount of image and video data generated by

users is astonishing. This data can be used for training Deep Learn-

ing (DL) models to serve a wide variety of tasks such as object de-

tection. In traditional DL, data is collected and used to train mod-

els in centralized environments such as cloud data centers. How-

ever, this practice presents privacy risks especially for data con-

taining private information (e.g., home surveillance footage). To

tackle such a challenge, different learning methods such as Fed-

erated Learning (FL) have been proposed. In FL [1], Liu et al.

proposed FedVision, a platform for training detection models. In

FedVision, DL models are trained locally and then sent to a remote

server, where they are aggregated to produce the global model.

This allows privacy preservation, but it poses new challenges as

training a full DL model is demanding for resource-limited user

devices. Another method is Split Computing (SC), where a DL

model is split into partial models, located at different devices. In

[2], the authors leveraged SC to train DL models for medical us-

age without exposing sensitive medical records to privacy risks as

data is accessible to only the partial model at the user’s device.

This method also allows computation-sharing among several de-

vices. However, since the training data is generated by only one

user, training performances are limited. In [3] and [4], the authors

proposed different learning methods combining FL and SC. How-

ever, their applications were only limited to image classification

with simple datasets such as MNIST and CIFAR10.

In this paper, we present OctoFedS, an Edge Computing system

for training DL models for object detection, which is considered a

more complex task compared to image classification. It uses SC

to protect users’ privacy and leverages Federated Aggregation to

take advantage of a large distributed dataset. We used OctoFedS

to train a YOLOv1 model distributedly and achieved nearly the

mean Average Precision (mAP) of 0.66 compared to 0.715 of the

traditional training method with a centralized dataset.

2. A Federated Split Learning System for Object
Detection at the Edge

Our system adopts Split Computing [2] as the base framework.

Under SC, a DL model is split into partial models and located at

several devices, which communicate only the intermediate data

output by the partial models. This approach provides two main

benefits: secured privacy as data is locally preserved, and shared

computational capability among multiple devices. In our system,

the model is divided into two parts, head and tail, distributed to the

client and the server respectively. This is illustrated in Figure 1(a).

2.1 Client

In OctoFedS, we consider each client a low-end edge device

(e.g., Jetson Nano) or personal computer (e.g., smartphone), which

has limited resources for training DL models, and thus, can benefit

from sharing the computation load with another device. As shown

in Figure 1(a), only the client has access to its data source, which

allows privacy preservation. Moreover, each client holds a copy

of the model’s head that processes locally generated data and ex-

tracts intermediate features up to the split point. These intermedi-

ate features are also called smashed data as it has been processed

by several convolutional layers and bears little resemblance to the

original data. The intermediate features are then sent to the server,

which will complete forward-propagation and sends back interme-

diate gradients so that the client can perform local weight update.

2022년 한국컴퓨터종합학술대회 논문집

1934



Intermediate 

Features

Intermediate 

Gradients

Intermediate Features/ 
Local Model Update

Intermediate Gradients/ 
Global Model Update

LossLoss

(a) (b)

...

Figure 1: DL model trained with (a) Split Computing and (b)
OctoFedS to take advantage of a larger dataset without unneces-
sary privacy risks

Furthermore, to overcome the obstacle of data distributedness

and reap the full benefits of clients’ data, we apply Federated

Learning (FL) as shown in Figure 1(b). Now, instead of training

each client separately, a cluster of clients are trained together. As

each head model extracts a unique set of features, our system effec-

tively expands the feature space to yield better training outcomes.

This will be discussed in detail in the next sections.

2.2 Server

As shown in Figure 1(a), the server holds the tail model. Upon

the reception of intermediate features from the clients, the tail

model uses these features as input to complete forward propaga-

tion, extracting the most discriminative features. After working

out the loss, it performs backward propagation and sends back the

intermediate gradients to the client, which will update its model

using the gradients. Furthermore, there is one server for each clus-

ter of clients. This design is reasonable since that while the server

may be computationally rich compared to clients, running several

tail models is a non-trivial task that requires a large amount of GPU

memory. Holding only one copy of the tail allows the server to

serve a large number of clients.

2.3 Federated Learning

The training process of OctoFedS has two main phases in which

a cluster of clients and the server will participate in sequence. It

consists of global epochs, each of which has N local epochs, where

N is the number of participating clients.

1. Pre-training: During this phase, each client acquire a suf-

ficient amount of training data with labels. We assume the

data is labeled either manually or using a teacher model [5].

We believe that this is a problem orthogonal to our focus and

thus does not affect the study validity. Once inputs from a de-

termined number of clients are ready, these clients will form a

cluster and get prepared for training. The server will send fun-

damental training configurations including number of global

epochs and learning rate, to each of the clients.

2. Federated Training: During this phase, each client inputs

their data into the head model, which will accomplish the

work up to the split point. Intermediate data will then be

sent to the server. After receiving smashed data from the

client, the server will finish the remaining forward propaga-

tion, calculating function loss then back-propagate until the

split point. As the server’s weights are updated, these up-

dates will be sent back to the client, where backpropagation

is continued and finalized. This completes a local epoch. Af-

ter all the clients have finished their local epochs, they send

their updated weights to the server, which will aggregate these

weights using Federated Averaging as follow:

Wglobal =
1

N

N∑
i=1

Wlocali (1)

The global model will then be distributed to all the clients,

which completes a global epoch. This process is repeated for

Ne times, where Ne is the number of global epochs, specified

in the Pre-training phase.

3. Experiments and Result Analysis

3.1 Experimental Settings

For object detection, we choose YOLOv1 with a pre-trained

ResNet-18 as the backbone. The split point is positioned after first

pool layer of the ResNet backbone. Both the server and the clients

are on a single machine with a RTX3090 GPU, running Ubuntu

20.04, CUDA 11.4, Python 3.8.10, and PyTorch 1.10.0.

The models are trained and validated with PascalVOC 2007 and

2012 datasets. To emulate users’ data, we divide the dataset ran-

domly into N equal portions, where N is the number of clients,

varied from 3 to 7. Each client i is assigned with data portion Di.

We conduct two experiments:

1. Experiment 1: The model is trained under two scenarios: (1)

each client is trained separately and (2) all clients are trained

using OctoFedS; and compare the mean Average Precision

(mAP) results.

2. Experiment 2: We divided the dataset for 6 clients but varying

the number of clients that do not participate in training (inac-

tive).

2022년 한국컴퓨터종합학술대회 논문집

1935



(a) 3 clients0.0
0.2
0.4
0.6
0.8
1.0

m
AP

(b) 4 clients (c) 5 clients (d) 6 clients (e) 7 clients

OctoFedS
individual

Figure 2: mAP results of model YOLOv1 trained with OctoFedS
and the number of clients ranging from 3 to 7.

All training is done over 100 epochs using Stochastic Gradient De-

scent (SGD) with a learning rate of 0.001. For fair comparison,

each training setting is repeated three times and the average results

are reported.

3.2 Performance Analysis

Experiement 1: As shown in Figure 2, under the first scenario

where clients are trained independently, mAPs are generally poor,

reaching only a maximum of around 0.5. Also, the performances

in this case decline when the number of clients increases. This

stems from the fact that the dataset when divided into smaller frac-

tions would yield imbalance distributions, in which classes might

be unevenly available or missing in each of the clients. This in-

deed matches realistic conditions where data from different users

are likely to be incomplete. The unavailability of certain classes in

training data leads to failure to detect objects of those categories,

which explains the low performances of individual clients. In con-

trast, implementing OctoFedS tackles the problem by applying FL

to a distributed system of server and clients. mAPs achieved by

OctoFedS are substantially higher, peaking at about 0.66, and con-

sistent even under different client number settings. This proves the

usefulness of FL that enables distributed learning, in which differ-

ent participants can benefit from others’ data without posing pri-

vacy risks. With this method, even though some classes might be

absent in one client, the presence of them in other clients would

help to re-balance this non-uniform behavior, eventually produc-

ing a more generalized global model for every participant.

Experiment 2: In the previous experiment, the results of

OctoFedS remain consistent even though the number of clients in-

creases. This is because even though the dataset of each client may

shrink, the amount of data in the system remains the same. In this

experiment, as the number of inactive clients decreases, the sys-

tem has more and more data, which results in better training re-

sults as shown in Figure 3. However, it is worth noticing that the

lowest mAP achieved by 4-inactive (approx. 0.5) is still better than

those of individual clients trained in Experiment 1. Overall, it can

be observed that performances were significantly improved with

OctoFedS.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
mAP

4-inactive
3-inactive
2-inactive
1-inactive
0-inactive

Figure 3: mAP results of OctoFedS when fixing data division and
varying the number of inactive clients.

4. Conclusion

In this study, we develop OctoFedS, a system that applies FL to

improve the training performance for object detection tasks. When

trained independently, clients perform poorly due to the lack of

data, however this issue can be resolved by jointly training with

FL, applied in OctoFedS. Furthermore, the application of SC in

the system can help with better data privacy and computational

efficiency.

Acknowledgement

This work was supported by Institute of Information & commu-

nications Technology Planning & Evaluation (IITP) grant funded

by the Korea government (MSIT) (No.2019-0-01126, Self-learning

based Autonomic IoT Edge Computing).

References

[1] Y. Liu, A. Huang, Y. Luo, H. Huang, Y. Liu, Y. Chen, L. Feng,

T. Chen, H. Yu, and Q. Yang, “FedVision: An Online Visual

Object Detection Platform Powered by Federated Learning,” in

Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 34, pp. 13172–13179, apr 2020.

[2] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split

learning for health: Distributed deep learning without sharing

raw patient data,” arXiv, pp. 1–7, 2018.

[3] J. Jeon and J. Kim, “Privacy-Sensitive Parallel Split Learn-

ing,” in Proceedings of International Conference on Informa-

tion Networking (ICOIN), pp. 7–9, IEEE, jan 2020.

[4] C. Thapa, M. A. P. Chamikara, S. Camtepe, and L. Sun,

“SplitFed: When Federated Learning Meets Split Learning,”

arXiv, 2020.

[5] R. Bhardwaj, Z. Xia, G. Ananthanarayanan, J. Jiang, Y. Shu,

N. Karianakis, K. Hsieh, P. Bahl, and I. Stoica, “Ekya : Con-

tinuous Learning of Video Analytics Models on Edge Com-

pute Servers,” in Proceedings of USENIX Symposium on Net-

worked Systems Design and Implementation, pp. 1–18, 2022.

2022년 한국컴퓨터종합학술대회 논문집

1936


	OctoFedS: A Federated Split Learning System for Object Detection at the Edge

