
Received July 3, 2020, accepted August 3, 2020, date of publication August 6, 2020, date of current version August 19, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3014802

A Distributed TDMA Scheduling Algorithm
Using Topological Ordering for Wireless
Sensor Networks
THANH-TUNG NGUYEN , TAEJOON KIM , (Member, IEEE),
AND TAEHONG KIM , (Member, IEEE)
School of Information and Communication Engineering, Chungbuk National University, Cheongju 28644, South Korea

Corresponding author: Taehong Kim (taehongkim@cbnu.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.
NRF-2019R1F1A1059408).

ABSTRACT In distributed wireless sensor networks (WSNs), TDMAprotocols are a widely applied solution
when a reliable data-transferring mechanism is in demand. However, to produce a TDMA schedule is not an
easy task. During the scheduling, there can be a large number of conflicts due to the nature of radio access,
which leads to a waste of operating time and energy. In this paper, we first present and discuss the concept of
Topological Ordering, which is based mainly on the local neighborhood size. It is aimed to create an order of
scheduling that helps reduce the competition and conflicts. Next, we propose a fast and effective distributed
scheduling algorithm using Topological Ordering, called DSTO, to create a collision-free TDMA schedule.
This algorithm is promising in terms of reducing running time and message collisions during the scheduling
phase, which in turn reduces overall message overhead. At the same time, efficient time slot allocation,
which translates to a shorter frame, is guaranteed. We implement DSTO together with two other distributed
scheduling algorithms on OPNETNetworkModeler and thoroughly analyze the comparative results to prove
its validity and effectiveness.

INDEX TERMS Distributed, DSTO, scheduling algorithm, TDMA, topological ordering, wireless sensor
networks.

I. INTRODUCTION
Wireless sensor networks (WSNs) have received increas-
ing interests from both the academic community and
the industries as they have been proved to have many
real-world applications including environmental monitor-
ing [1]–[3], pollution monitoring [3], [4], disaster fore-
cast, prevention and management [5]–[7], structural health
monitoring [8]–[10], wildlife tracking [11], [12], cattle
farm monitoring [13]–[15], and most recently the Internet
of Things [16], [17]. In WSNs, carrier sensing multiple
access (CSMA) has been widely used as a medium access
control (MAC) protocol as it has several advantages such as
robustness, flexibility, and full distributedness [18]. However,
it is prone to collisions because two or more neighboring
nodes may be transmitting at the same time. Even though
control packets, such as RTS, CTS, and ACK, are helpful in

The associate editor coordinating the review of this manuscript and

approving it for publication was Juan Liu .

solving this problem, they may add up to the overhead costs
by 40% [19].

On the other hand, time division multiple access (TDMA)
has proven to be a more reliable protocol with respect to its
collision-free data-transferring. However, scheduling, or time
slot allocation, is always a challenging issue, especially in
multihop networks. There have been various approaches to
tackle this problem. For example, the authors in [20] proposed
an algorithm that can provide a distributed collision-free
schedule. However, it requires all nodes to be strictly
synchronized, which is not a realistic assumption for real-life
networks. Rhee et al. proposed a distributed version of
the randomized scheduling algorithm RAND [21], called
DRAND [22]. Not only DRAND can allocate slots without
collisions, it does not require clock-synchronization or global
information. However, due to its random nature, DRAND
may have a large number of collisions during the schedul-
ing phase, which leads to long running time and generat-
ing a large amount of message overhead. For these reasons,

145316 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-8186-2600
https://orcid.org/0000-0001-6326-2559
https://orcid.org/0000-0001-6246-6218
https://orcid.org/0000-0003-3402-3123

T.-T. Nguyen et al.: Distributed TDMA Scheduling Algorithm Using Topological Ordering for WSNs

DRANDmay not suitable for networks with frequent changes
in topology. For example, UAV networks for monitoring farm
cattle [13] have to deal with sudden topology changes due to
node or communication failures. For this type of networks,
a TDMA scheduling algorithm with short running time and
low message overhead is promising as it can quickly adapt to
changes and efficiently reduce energy consumption. To over-
come the problem of DRAND, the authors in [23]–[25] pro-
posed various priority factors such as energy-topology and
inter-node distance. Evidently, this helps reduce collisions,
but does not completely eliminate the problem.

Our early effort to tackle this problem was presented
in [37]. In the paper, we introduced Topological Ordering
and a simple scheduling algorithm. The simulation results
showed comparisons betweenDSTO andDRAND in terms of
running time and number of rounds to complete scheduling.
In this paper, we extend the previous work with the following
contributions:
• We improve the scheduling algorithm to handle diverse
cases in practical WSNs by adding the checking con-
dition for message reception status and slot awareness
of nodes. This increases completeness, efficiency, and
applicability.

• We provide theoretical analysis on the complexity and
running time of the algorithm, and implementation
guidelines (e.g., types of messages), so that readers can
have a better understanding on the concept and easily
re-implement DSTO.

• We conduct more extensive evaluations to demonstrate
the effectiveness of DSTO over two other scheduling
algorithms. From the comparative evaluation results,
diverse performance aspects of DSTO such as running
time, message overhead, and slot allocation are thor-
oughly analyzed to prove the efficiency of our algorithm.

The rest of our paper is organized as follows. Section II
analyzes the related works on scheduling in WSNs.
Section III provides the theoretical and formal definition for
the TDMA scheduling problem, alongside basic notations.
In Section IV, we explain the idea of TO in details. Section V
presents our proposed algorithm and its employed message
structures. Section VI presents the theoretical analysis of
DSTO. In Section VII, we describe the simulation setup and
analyze the results to validate the effectiveness of DSTO.
Lastly, Section VIII concludes this paper.

II. RELATED WORK
In TDMA, to produce a collision-free schedule using themin-
imum number of slots is a NP-Complete problem [21]. There
have been several different approaches, which can mainly be
categorized into centralized and distributed scheduling. The
early works were mostly centralized scheduling and focused
on looking for an optimal solution for the scheduling problem
[26]–[29]. However, as these algorithms require full knowl-
edge on network topology, they are not suitable for large scale
multi-hop networks, even though their expected complexity is
just O(n), where n is the number of nodes in the network.

On the other hand, distributed scheduling algorithms work
based on local information, usually on neighbors within a
two-hop distance. Therefore, they are scalable and more suit-
able for dynamic networks with frequent changes in network
topology. However, a major disadvantage is that their slot
allocation performance is not as good as that of centralized
algorithms. In NAMA [30], the authors proposed a hashing
technique to determine contenders’ priorities. Time is divided
into blocks of several sections. Each section is further divided
into parts and then time slots.When a node has data packets to
send, it chooses a part and a time slot of that part to contend.
Furthermore, the last section of a block is called the member-
ship section and used exclusively for management purposes.
Each slot of this section is again divided into segments for
newcomer nodes to send signals that contain their IDs and a
part they wish to contend. An advantage of this algorithm is
that it does not require a contention phase or global topology
information. However, its computational complexity can be
O(n2), as the priorities of all the two-hop neighbors are to be
calculated at each node every slot, and it also requires nodes
to be time-synchronized. Rozovsky and Kumar [31] proposed
SEEDEX, which aims to avoid collisions while not having to
reserve for every packet with a hash function as well. The
drawback of SEEDEX is that it is prone to collisions when
two nodes pick and transmit at the same slot.

The authors in [32] proposed Five-phase Reservation Pro-
tocol (FPRP), a heuristic distributed scheduling algorithm
for dynamic slot allocation. FPRP runs in cycles, each of
which consists of a Reservation Frame (RF) and several
Information Frames (IFs). Each RF contains a number of
Reservation Slots (RSs) and each IF contains the same num-
ber of corresponding Information Slots (ISs). To reserve an
IS, nodes run 5 reservation steps during their correspond-
ing RSs. DICSA [33], a distributed and concurrent link
scheduling algorithm, introduced a two-state-machine algo-
rithm, primary and secondary, that allows each node and
its neighbors to participate in each other’s slot reservation
process. To ensure a collision-free schedule, both of these
algorithms have to maintain a common list of forbidden slots.
Although DICSA does not require time synchronization, its
performance may be varied as time difference among nodes
can cause slot overlaps and collisions.

Bhatia and Hansdah [20] introduced DTSS, a distributed
algorithm, to solve the spatially correlated contention
between neighboring nodes. The authors proposed the strong
and weak-conflict models to support all unicast, multicast,
and broadcast. In unicast and multicast modes, the algorithm
allows nodes, even two-hop neighbor nodes, to have the
same time slot as long as they do not cause interference
to one another’s receivers. DTSS performs well in terms of
scheduling time, however, since it requires all nodes to be
strictly synchronized, extra time and network traffic for run-
ning time-synchronization algorithms are needed. Moreover,
the frame length in DTSS must be set to be equal or larger
than δ, where δ is the maximum size of two-hop neighbor-
hoods, which leads to low channel utilization rate. Lakhlef,

VOLUME 8, 2020 145317

T.-T. Nguyen et al.: Distributed TDMA Scheduling Algorithm Using Topological Ordering for WSNs

Raynal and Taiani [34] proposed a frugal vertex coloring
algorithm for tree-based distributed broadcast networks to
avoid conflicts and collisions. This algorithm can reduce
the execution time and number of broadcast messages and
improve channel utilization by using the minimum number
of slots. However, in the paper, the simulations were only
performed on networks with the maximum node degree of 7.
In large-scale networks, the algorithm may suffer from long
running time and high message overhead due to a high node
density.

Rhee et al. [22] proposed a distributed randomized time
slot scheduling algorithm, named DRAND, based on a cen-
tralized algorithm called RAND [21]. DRAND is employed
by the hybrid protocol named Zebra-MAC [18], or ZMAC,
as its scheduling algorithm. In DRAND, nodes work in four
different states IDLE, REQUEST, GRANT and RELEASE.
At IDLE state, in each round, if a node u wins the lottery,
it moves to REQUEST state and broadcasts a request to its
one-hop neighbors. If this request is answered with a grant by
all of the one-hop neighbors, the node can choose a minimum
free time slot. After that, it moves to RELEASE state and
broadcasts a release which contains the information about its
chosen slot. However, if at least one of the one-hop neighbors
answers with a reject, the round is considered unsuccessful.
Node u then has to send a fail to its one-hop neighbor to
signal a failed round and then moves back to IDLE state and
starts again later. One-hop neighbors that have sent a grant
to u also have to move from GRANT state back to IDLE state
(if they have not decided on their slot) or RELEASE state (if
they have). DRAND guarantees collision free slot assignment
for any network with message complexity O(δ), where δ is
the maximum number of nodes in any two-hop neighbor-
hood. However, DRAND also has its drawbacks, which we
define as random competition problem in slot scheduling in
distributed WSNs.

Firstly, in DRAND, several nodes may send requests at
the same time, which certainly results in collisions. More-
over, a node may send a request while some of its one-hop
neighbors are in GRANT state and ends up being rejected by
those nodes. Furthermore, due to the random nature, a node
may lose the lottery several times before being allowed to
send a request. Even when it does send, there is no guarantee
that it can reserve a time slot in that round. Each node may
have to go through several trials (rounds) and fails before
being able to reserve a slot, which causes higher running time
and more energy consumption. Secondly, when a node u is
rejected by a one-hop neighbor, it has to send a fail to all
of the one-hop neighbors. However, this message may not
successfully reach some of them, which will keep waiting and
periodically sending grants to u until they recognize u has
failed. All the above-mentioned points show that while able
to produce a collision-free schedule, DRAND is ineffective
in terms of running time, message overhead, and energy
consumption.

L-DRAND++ [25], E-T-DRAND [23] and ET-BT-
DRAND [24], which are DRAND’s variants, were proposed

to combat the random competition problem of DRAND.
They employ inter-node distance information and energy-
topology, respectively, as priority factors to make sure that in
each neighborhood, there is only one node with the highest
calculated priority that can compete for its time slot at any
moment and other nodes have to wait if they have lower
priorities. Similarly to DRAND, after the highest prioritized
node, named A, in the neighborhood has selected a time slot,
it broadcasts a RELEASE message to notify its neighbors.
Here lies a major concern on these algorithms as there seems
to be no reliable mechanism to ensure this information will
be successfully delivered to neighbor nodes with lower pri-
orities. In this case, these nodes will wait indefinitely since
they have not received A’s message. Thus, these algorithms
do not work in our simulation settings and we exclude them
from the performance evaluation.

In [35], Batta et al. proposed an improved version of
DRAND, called I-DRAND, which aims to provide a TDMA
schedule for tree-based distributed networks. This algorithm
follows almost exactly DRAND’s four-state model. The only
difference is that nodes in I-DRAND collect requests from
its neighbor during one round and only send a grant to the
priority node at the end of that round. The order of priority is:
its parent, its child and a sibling that has the highest degree.
By restricting sending of grants/rejects at the end of each
round, this algorithm can reduce the number of collisions and
conflicts, and thus reduce execution time. However, the ran-
dom competition problem of DRAND as presented above
is not yet solved. Another tree-based distributed TDMA
scheduling algorithm is presented in [36]. This algorithm
works in a bottom up manner. Each parent collects its chil-
dren’s calculated weights and grandchildren’s assigned slots
through request message from the children. Once having
received requests from all of its children, the parent performs
scheduling for them by itself. However, the algorithm does
not provide an acknowledge mechanism for request messages
from child nodes to their parent, thus they may have to send
requests continuously every round until receiving a schedule
from the parent, leading tomore generatedmessage overhead.

Table 1 summarizes diverse aspects of TDMA scheduling
algorithms reviewed in this section. In this paper, we propose
a distributed scheduling algorithm using Topological Order-
ing. By creating an order to tackle the random competition
problem in slot scheduling in distributed WSNs, our algo-
rithm allows nodes to schedule in an orderly fashion to reduce
scheduling delay and collisions between neighbors, which
helps lower running time, generated message transmissions,
and numbers of rounds required to finish scheduling as well
as provides efficient slot allocation.

III. PRELIMINARIES
We first define the theoretical problem, which includes the
network model and fundamental concepts of graph theories
in Subsection III-A. Then, we proceed to provide the basic
notations used in the proposed algorithm in Subsection III-B.

145318 VOLUME 8, 2020

T.-T. Nguyen et al.: Distributed TDMA Scheduling Algorithm Using Topological Ordering for WSNs

TABLE 1. Summary of related works.

A. TDMA SLOT ASSIGNMENT IN WIRELESS SENSOR
NETWORKS
A WSN can be represented by an undirected graph
G = (V ,E), where V is the set of vertices, or nodes, and E is
the set of bidirectional links such that link e = (u, v) exists,
if and only if node u, v ∈ V are in each other’s transmission
range. We assume that all node have identical transmission
radius. Thus, two nodes’ transmitting signals simultaneously
will cause interference among themselves or at a third node,
if they are one- or two-hop away, respectively.

Therefore, we define the problem as producing a schedule
in which no two nodes within two hops from each other have
the same slot. In Graph theory, this problem can be referred to
as vertex-coloring, which is NP-hard [21]. Two vertices u, v ∈
G can have the same color if and only if both of the following
conditions hold.
• e = (u, v) /∈ E .
• There does not exist a vertex x such that e1 = (u, x) ∈ E
and e′1 = (x, v) ∈ E .

In this paper, to determine the performance of a coloring—
or slot asignment—algorithm, we consider the following
aspects.
• Running Time T is the amount of time taken to color
all vertices in V , or for all nodes to acquire a time
slot. Shortening running time is a important goal for
scheduling algorithms since it would reduce energy con-
sumption and increase QoS.

• Number of TransmissionsC is the number of messages
transmitted by all nodes to produce a complete schedule.
A lower number of transmitted messages also reduces

energy consumption and running time, which leads to
better QoS.

• Frame Length L is the number of slots needed to
accommodate all nodes, which is also the number of
colors needed for all vertices in V . A shorter frame
directly translates into better channel utilization.

In distributed WSNs, message transmissions during the
process of TDMA scheduling are prone to collisions, espe-
cially in high density networks, as neighbors are not aware of
one another’s transmission timing. This detrimentally affects
the performance of the whole network, because collided mes-
sages need to be retransmitted, which requires longer running
time and consumes more energy. Therefore, with the aim
of solving the random competition problem and improving
the performance of WSNs, we propose the concept of Topo-
logical Ordering alongside a quick and efficient scheduling
algorithm.

B. BASIC NOTATIONS
This subsection provides the basic notations used for our
algorithm descriptions. In the interest of clarity, from hereon,
all neighbors within two hops are simply referred to as neigh-
bors. Also, neighbor nodes which are one-, two-hop away are
referred to as one- and two-hop neighbors, respectively. The
following basic notations are provided to give readers a better
understanding of our algorithm.

• N1(u) is the set of one-hop neighbors of node u. If node
v ∈ N (u), u and v can successfully receive messages
from one another. The number of one-hop neighbors is
|N1(u)|.

VOLUME 8, 2020 145319

T.-T. Nguyen et al.: Distributed TDMA Scheduling Algorithm Using Topological Ordering for WSNs

• N (u) is the set of all neighbors of node u. The number of
neighbors is |N (u)|. We have N1(u) ⊆ N (u). In addition,
as N1(u) and N (u) are defined, it is not necessary to
define another set for two-hop neighbors. because if
node v ∈ N (u) and v /∈ N1(u), v is identified as a two-hop
neighbor.

• val(u) is the randomly self-assigned numerical value of
node u.

• S(u) is the vector of slots assigned by nodes in N1(u).
• P(u) is the Priority value of node u. This is explained
further in Subsection IV-A.

All the notations, along with other above-mentioned ones,
are summarized in Table 2.

TABLE 2. Abbreviation table.

IV. TOPOLOGICAL ORDERING AND SLOT-AWARENESS
TABLE
Wedescribe how topological information (TI), which consists
of the total number of neighbors |N (u)| and the random value
val(u), can be used by each node to create a TO for its two-hop
neighborhood in Subsection IV-A. Then, in Subsection IV-B,

FIGURE 1. Example of SAT and TOT.

we introduce Slot-Awareness Table (SAT)–a tool for nodes
to keep track of the changes in slot assignment inside its
neighborhood.

A. TOPOLOGICAL ORDERING IN DISTRIBUTED WSNs
In DSTO, the TI collected by each node is used to produce
a TO, or scheduling order, consisting of the node itself and
its neighbors within a two-hop distance. With this order, each
node knows exactly when its turn is or in other words, how
many neighbors for which it has to wait before it is allowed to
reserve a time slot. TO is a list of descending priority values.
A node u’s priority value is denoted as P(u) and determined
by the u’s total number of neighbors |N (u)| and a randomized
numerical value val(u). Between any two neighbor nodes u
and v, we have:

P(u) > P(v), if (|N (u)| > |N (v)|) or
(|N (u)| = |N (v)|&val(u) > val(v))

P(u) < P(v), otherwise

(1)

The numerical value, which is randomly chosen between
the range of int32 by each node, is used in case u and v
have the same number of neighbors to avoid possible dead-
locks. In this case, the node with the higher value has higher
priority. Theoretically speaking, it is possible that two or
more neighbor nodes may pick the same number, but the
possibility of that is extremely low. Therefore, in this paper,
we assume each node has a unique value. This assumption
is reasonable as in actual networks, node can be assigned
a unique identification to specify their priority, roles, etc.
Fig. 1 shows an example of Topological Ordering in a Dis-
tributed WSN. In A’s Topological Order Table (TOT), we can
see that:

P(A) > P(B) > P(D) > P(C) > P(E) (2)

Thus, the sequence of scheduling nodes from A’s point of
view is ABDCE with A as the first node and E as the last.
In E’s TOT, there are only four nodes as C is three-hop away
from E . There, the sequence of scheduling nodes at E is

145320 VOLUME 8, 2020

T.-T. Nguyen et al.: Distributed TDMA Scheduling Algorithm Using Topological Ordering for WSNs

FIGURE 2. The structures of messages.

only ABDE . After node A has finished assigning a time slot,
it will be removed from its own and other nodes’ TOTs. Node
A’s position on these tables will be filled by another node to
keep the algorithm working continuously.

B. SLOT-AWARENESS TABLE
The correctness of DSTO requires each node to be aware
of its neighbors’ assigned slots and also their awareness
about nodes inside the neighborhood. Thus, each node stores
exchanged information inside an SAT. In a node A’s SAT,
SATA(i, j) = a (∀ a > 0) shows that node A is aware that
node i has received information about node j’s taking time
slot a. If i is A, it indicates that A has had information about
node j’s time slot. In cases where j is A, it means A has
received j’s confirmation on its own time slot. Fig. 1 shows an
example of SAT . SATA(C,A) is set to be 1 after node C has
successfully confirmed to A that it is aware that A has chosen
slot 1. In addition, SATA(C,B) is 2 as A knows C is aware
that B has picked slot 2. The rest of this table will be further
discussed in Subsection IV-E.

V. DSTO, THE SCHEDULING ALGORITHM USING
TOPOLOGICAL ORDERING
In our algorithm, there are two main phases. The first phase
is Neighbor Discovery Phase (NDP), in which neighboring
nodes exchange TI with their one-hop neighbors. After this
phase, each node u has the information sufficient to construct
a TO of its two-hop neighborhood. In Scheduling Phase
(SCP), node u will perform slot assignment according to
this TO.

In Subsection V-A, we first introduce the algorithm for
exchanging HELLO messages carrying TI during the NDP.
Then, the main scheduling algorithm using Topological
Ordering is described in Subsection V-B. To help read-
ers have a better understanding and avoid any confusion,
Subsection V-C is spent to describe in detail the types of
messages used in this paper. Next, in Subsection V-D,
we describe second component of the algorithm and its
logical conditions to handle all possible cases. Lastly,
in Subsection V-E, an example is presented with a thorough

explanation to provide amore in-depth understanding into our
scheduling algorithm.

A. NEIGHBOR DISCOVERY PHASE
Each node repeatedly broadcasts HELLO messages, whose
structure is shown in Fig. 2, that contain its TI and its
one-hop neighbors’ TI at random moments during the NDP.
This ensures that each node is constantly updated on all
neighbors within two hops. Upon reception of a HELLO
from a neighbor node v, node u first adds v into its N(u)
and N1(u), respectively, if v does not yet exist in these lists
(Algorithm 1, lines 2 – 8) and then updates its TOT with v’s
TI (Algorithm 1, line 9). Next, node u checks if each node x
in the list of v’s one-hop neighbors N1(v) are not in N (u) and
N1(u). If this is true, node xmust be u’s two-hop neighbor and
is added to N (u) (Algorithm 1, line 10-15).
After transmitting a HELLO message, each node has to

wait for a period of time, called helloTimer, before broadcast-
ing again (Algorithm 1, line 17). The next HELLO message
will contain updated information on node u and its one-hop
neighbors (Algorithm 1, line 18-22). A similar neighbor dis-
covery method is also used by DRAND [22] in its ns2 simu-
lation. The length of the NDP, denoted ndTimer, is set to be
long enough for all nodes to discover their neighbors within
a two-hop range. After ndTimer expires, each node stops
broadcasting HELLOs and transfers into the SCP.

B. SCHEDULING PHASE
As discussed in the previous section, each node in DSTO
performs scheduling tasks according to the TO presented in
its TOT. A node ranked 5 on its own TOT has to wait until
the four neighbors ranked from 1 to 4 on its TOT to have
assigned their slots. Function Main() in Algorithm 2 shows
the pseudocode of DSTO’s main scheduling algorithm during
the SCP. The detailed explanation of this algorithm is given
below.

After NDP has ended, all nodes automatically transit to the
SCP. At the beginning of this phase, if a node u is on top of
its TOT, it automatically picks the minimum slot available
(slot 1) and starts broadcasting a RELEASE (RL) message,
which contains information about the slot, to its one-hop

VOLUME 8, 2020 145321

T.-T. Nguyen et al.: Distributed TDMA Scheduling Algorithm Using Topological Ordering for WSNs

Algorithm 1 Algorithm for Neighbor Discovery Phase
PROCEDURE HelloHandler()
INPUT: Node u

addr(u), val(u), N (u), N1(u)
OUTPUT: Broadcasting HELLO messages

Collecting neighbors’ information

1: while ndTimer has not yet expired do
2: if u receives a HELLO message m from v then
3: if node v /∈ N (u) then
4: add v→ N (u)
5: end if
6: if node v /∈ N1(u) then
7: add v→ N1(u)
8: end if
9: update N (v), val(v) in TOT
10: foreach node x ∈ N1(v) do
11: if x /∈ N (u) && x /∈ N1(u) then
12: add x → N (u)
13: end if
14: update N (x), val(x) in TOT
15: end foreach
16: else
17: if helloTimer has expired then
18: set HELLO with [dst = 0xFFFFFFFF,

src = addr(u), |N (u)|, val(u)]
19: foreach node v ∈ N1(u) do
20: update HELLO with [addr(v), |N (v)|, val(v)]
21: end foreach
22: send HELLO
23: end if
24: end if
25: end while

neighbors (Algorithm 2, lines 2–8). The detailed descriptions
of this message will be provided in Subsection V-C. Node u
then waits for the neighbors to confirm they have received
the message. The amount of waiting time is set by the release
timer, denoted relTimer . After that, if there are still one-hop
neighbors that have not replied confirming the reception of
u’s RL message, or |R(u)| < |N1(u)|, it rebroadcasts another
RL (Algorithm 2, lines 18–22). At the time of retransmission,
as u have received confirmations from some of its one-hop
neighbors, it adds the list of these neighbors, R(u), into the
message to ensure that they do not reply more times than nec-
essary. The RL procedure only stops once |R(u)| = |N1(u)|,
which indicates all one-hop neighbors are aware of u’s slot
assignment. Additionally, the list of one-hop neighbors and
their assigned time slots, S(u), is piggy-backed in RLs as well,
if it does exist.

On the other hand, if it is not yet node u’s turn to schedule
when the SCP starts, or it has already finished scheduling,
it waits for neighbors’ messages. When u receives a RL from
a neighbor, denoted as relNb, it first adds slot information of
that neighbor into its SAT and removes that neighbor from its

Algorithm 2Main Algorithm in Scheduling Phase
PROCEDUREMain()
INPUT: node u, addr(u), slot(u), R(u), S(u), N1(u)

u’s SAT and TOT

1: while node u or any one-hop neighbor does not have a
time slot do

2: if u receives a message m from node v ‖ SCP starts then
3: update SAT
4: update TOT
5: if u is top of TOT then
6: pick a minimum available slot
7: send RL (dst, src = addr(u), slot(u),R(u), S(u))
8: set relTimer ← 4dtx
9: else
10: if type(m) == RL then
11: relNb← v
12: Execute fwAndRelConfirm(relNb)
13: else if type(m) == FW then
14: send FWC(dst = addr(src(m)),

src = addr(u), 1)
15: end if
16: end if
17: end if
18: if relTimer has expired && |R(u)| < |N1(u)| then
19: send RL (dst, src = addr(u), slot(u),R(u), S(u))
20: set relTimer ← 4dtx
21: end if
22: end while

TOT (Algorithm 2, lines 3–4). Subsequently, if u has become
the top of its TOT, it chooses a minimum slot available and
broadcasts RLs exactly as described above (Algorithm 2,
lines 5–8). Otherwise, u may have to pass the information
on relNb’s slot to a target neighbor, denoted fwTg, with a
FORWARD (FW) message or just simply reply relNb with
a RELEASE-CONFIRMATION (RLC) message. Therefore,
it executes fwAndRelConfirm() in Algorithm 3, which will
be described subsequently (Algorithm 2, lines 10-12). Oth-
erwise, if u receives a FW from a neighbor, it simply replies
with a FORWARD-CONFIRMATION (FWC) to the sender
(Algorithm 2, lines 13–14). The algorithm ends once all of
nodes inside u’s one-hop neighborhood has finished their
scheduling.

C. COMMUNICATION MESSAGES
Detailed structures of the messages used in the SCP of DSTO
are shown in Fig. 2. All messages including RL, FW, FWC,
and RLC are broadcast to all neighbors within a one-hop
range. Since broadcasting does not provide an acknowledg-
ment mechanism, we use RLC and FWC as a way to confirm
the receptions of RL and FW, respectively. This is further
explained in the next three paragraphs.
RL messages are broadcast to all one-hop neighbors of

the sender u to announce that it has successfully reserved

145322 VOLUME 8, 2020

T.-T. Nguyen et al.: Distributed TDMA Scheduling Algorithm Using Topological Ordering for WSNs

a time slot. The destination address field (dst) is set to be
0xFFFFFFFF. Furthermore, the lists of the sender u’s one-hop
neighbors that have confirmed the reception of u’s RL and
u’s one-hop neighbors that have assigned their time slots (or
R(u) and S(u) respectively) are also added as well if they
exist. For example, the first RL does not contain R because
there has not been any node’s replying. In addition, S may
be empty as well, if the sender is the first node to schedule
in its one-hop neighborhood. Due to collision, RL messages
may not be successfully broadcast to all the neighbors. Thus,
retransmission is necessary. After broadcasting a RL, node u
waits for an amount of time called relTimer equal to 4dtx ,
in which dtx is the maximum one-way transmission delay
between u and its one-hop neighbors, and it is measured
during the NDP. The length of relTimer is determined based
on experimental results.
FW messages can be used to acknowledge the reception

of a RL from a neighbor–relNb, as well as to forward slot
information to another one-hop neighbor called fwTg. Similar
to RL messages, its dst field is also set to 0xFFFFFFFF. The
addresses of two explicit recipients, which are for relNb and
fwTg, are stored in dst1 and dst2, respectively. In case where
the sender no longer has to reply to relNb, field dst2will be set
at 0×00. The list of two-hop neighbors whose slots fwTg are
not yet aware of, denoted as U , is also included when it does
exist. This type of messages also requires retransmission.
The waiting period, fwTimer , is set to be 5dtx also based on
experimental results.
RLC and FWC messages are used only to confirm the

reception of a RL or a FW, respectively, so besides identi-
ficative and checking bits (e.g, header and src), they both
only have one other field called Confirmation bits to signal
that they have successfully received the last message. Both
of these messages are only transmitted promptly upon the
reception of a RL or FW. Therefore, they do not require
retransmission.

D. FW AND RLC HANDLING ALGORITHM
In Subsection V-B, we mentioned that when u receives a
RL, it is required to decide whether to only reply to relNb
with an RLC or forward the slot information to fwTg with
a FW. While RLCs are just for sending confirmation on the
reception of RLs, FWs are used for confirmation as well as
to notify fwTg, which is a one-hop neighbor of u that has
not decided on its slot and is ranked higher than u and all
the other one-hop neighbors in u’s TOT. Because if fwTg is
two-hop away from relNb and other one-hop neighbors of u,
it should be updated on their scheduling information to avoid
choosing a collided slot. If such node cannot be found, there is
no need to send a FW, so u only confirm to relNbwith an RLC
(Algorithm 3, lines 1–4).

Otherwise, if there exists a target node fwTg, node u exam-
ines two conditions (Algorithm 3, line 7). The first one is{

SATu(u, relNb) > 0
SATu(fwTg, relNb) = 0

(3)

Algorithm 3 Algorithm to Handle FW and RLC in Schedul-
ing Phase
PROCEDURE fwAndRelConfirm(relNb)
INPUT: node u, addr(u), slot(u), R(u), S(u), N1(u)

u’s SAT and TOT

1: if fwTimer has expired ‖ being called from Main() then
2: find fwTg
3: if fwTg is not found then
4: send RLC(dst = addr(relNb), src = addr(u), 1)
5: else
6: foreach node x ∈ N1(u) && x /∈ N1(fwTg) do
7: if SATu(u, x) > 0 && SATu(fwTg, x) == 0

then
8: if x == relNb then
9: relFwFlag← 1
10: else
11: otherFlag← 1
12: add [addr(x), SATu(u, x)]→ Uu(fwTg)
13: end if
14: end if
15: end foreach
16: if otherFlag == 1 ‖ (relFwFlag == 1 &&

otherFlag == 0 && u is fwTg’s one-hop neighbor with
least neighbors) then

17: dst1← addr(fwTg)
18: dst2← (u /∈ R(relNb)) ? addr(relNb) : 0x00
19: send FW (dst1, dst2, src = addr(u),

SATu(u, relNb),Uu(fwTg))
20: set fwTimer ← 5dtx
21: else
22: if u /∈ R(relNb) then
23: send RLC(dst = addr(relNb), src = addr(u), 1)
24: end if
25: end if
26: end if
27: end if

Here, SATu(u, relNb) > 0 indicates that node u is aware of
the slot assignment of relNb. Therefore, if according to u’s
knowledge, fwTg has not been aware of that, which is signaled
by SATu(fwTg, relNb) = 0, it has to send a FW to fwTg. Thus,
it sets relFwFlag to 1 (Algorithm 3, lines 7-9). Moreover,
condition 2 is{

SATu(u, x) > 0
SATu(fwTg, x) = 0

∀x ∈ N1(u) & x /∈ N1(fwTg) (4)

This condition holds if there is at least one node x that
is a common one-hop neighbor of u and fwTg, whose slot
information still remains unknown to fwTg. In this case, u sets
otherFlag to 1 to indicate that u has to send a FW to notify
fwTg about x’s slot information as well. Additionally, u adds
each node x and its slot information into a list denoted as
Uu(fwTg) (Algorithm 3, lines 7, 10-12). This check results in

VOLUME 8, 2020 145323

T.-T. Nguyen et al.: Distributed TDMA Scheduling Algorithm Using Topological Ordering for WSNs

three possible cases, for which a simple graphical illustration
is presented in Fig. 3(a).

FIGURE 3. Graphical illustration for logical conditions of 3 cases in
fwAndRelConfirm() algorithm.

Case 1: At least condition 2 is met, or otherFlag == 1
(Algorithm 3, line 16). This is illustrated in Fig. 3(b), in which
SATu(u, on) = a and SATu(fwTg, on) = 0, where on repre-
sents x. In this case, besides relNb, there is slot information
from other two-hop neighbors of fwTg of which it is yet
unaware, which makes it necessary to send a FW to fwTg.
Therefore dst1 is set to address of fwTg. Node u also checks
if it is required to answer to the node that previously sent
it a RL, relNb. If yes, dst2 is filled with relNb’s address.
Otherwise, it will be set to 0× 00 (Algorithm 3, line 17-18).
Next, it broadcasts the FW message to both notify fwTg and
confirm on the reception of relNb’s previous RL message
(Algorithm 3, line 19-20).
Case 2: Only condition 1 is met, or relFwFlag == 1

and otherFlag == 0 (Algorithm 3, line 16) as illus-
trated in Fig. 3(c), in which SATu(u, relNb) = b and
SATu(fwTg, relNb) = 0 while both of SATu(u, on) and
SATu(fwTg, on) are a. This indicates there is only slot infor-
mation of relNb to be forwarded. Here, if u is the node that
has the least number of neighbors amongst common one-hop
neighbors, denoted cn in Fig. 3, of fwTg and relNb, uwill send
a FW. Because, only if there is at least one more common
one-hop neighbor between fwTg and relNb besides u, only of
them has to forward to fwTg (Algorithm 3, line 16-20). This
ensures there are no redundant messages and thus reduces the
total number of generated messages.
Case 3: In this case, none of two above-mentioned

cases are matched as illustrated in Fig. 3(d).
Here, SATu(u, relNb) = SATu(fwTg, relNb) = b and
SATu(u, on) = SATu(fwTg, on) = a. This indicates it is not
necessary to send a FW to fwTg. In this case, u only checks
if it is already included in R(relNb). If no, u sends an RLC to

relNb to confirm the reception of the last RL (Algorithm 3,
lines 21–23).

E. EXAMPLE
Fig. 4 shows how the proposed scheduling algorithm can be
applied on the network presented earlier in Fig. 1. In this
example, for the sake of simplicity and clarity, only changes
made to node A’s SAT and TOT, or in other words, from A’s
point-of-view, are shown. In this case, the SCP can be roughly
divided into 4 steps as below.

FIGURE 4. Example of applying DSTO into a wireless sensor network.

Step 1: Since node A has the highest position on its and its
neighbors’ TOTs, it takes slot 1, removes itself from its TOT,
and broadcasts this information along with a RL. Both node
D and C do not have a fwTg, therefore they reply to A with
an RLC. A sets SATA(C,A) = SATA(D,A) = 1.
Step 2: However, in B’s case, after receiving A’s slot infor-

mation, it has enough information for scheduling as A is
the only node that is ranked higher than itself. B removes
A from its TOT. It is now on top of the TOT and allowed
to schedule. Therefore, B takes the minimum available slot,
which is slot 2 and broadcasts its RL. It should be noted
A’s slot information is piggy-backed in B’s RL because A
is a one-hop neighbor of B. Therefore, node A is still able
to know that its RL has successfully arrived at B. Upon the
reception of B’s RL, A removes B from its TOT and set
SATA(B,A), SATA(A,B) to 1 and 2, respectively. Now, both A
and E have the same fwTg, which is D because D is two-hop
away from B and has to know B’s slot information before it
can start scheduling. In addition, since there is only B’s slot
information to be forwarded and E has less neighbors than A
does, E sends a FW toD, which also serves as a confirmation
to B. Node A, on the other hand, simply replies B with an
RLC.
Step 3: After receiving the FW from E , node D picks

slot 3 and broadcasts the information to A and E . C now
becomes A’s forwarded target node, thus, A has to forward
D’s information toC . Additionally, in Step 2, A only forwards
B’s information to D, thus C is still not aware of B’s assigned
slot. However, because B is a one-hop neighbor of A, its slot
information is also piggy-backed in A’s FW. As a result, C

145324 VOLUME 8, 2020

T.-T. Nguyen et al.: Distributed TDMA Scheduling Algorithm Using Topological Ordering for WSNs

can know about B and D’s assigned slots even though they
are two-hop away.
Step 4: As stated earlier, the scheduling order from A’s

point of view is A, B, D, C and E . However, C and E are
three-hop away from each other, which allows them to sched-
ule at the same turn without causing conflicts. Both C and E
take slot 4 and broadcast their RLs. Next, node B and D reply
to E with an RLC to confirm the reception of E’s RL. Node
A also receives the RL from C and then updates it TOT and
SAT. Even though C’s RL does not piggy-back information
about B andD as they are its two-hop neighbors, A still knows
that C has successfully received its FW. This is because C
is only allowed to schedule once all of the higher-ranked
nodes, which are A, B andD, have decided on their time slots.
Therefore, SATA(C,B), SATA(C,D) and SATA(A,C) are set
to 2, 3 and 4, respectively. Lastly, A confirms to C with an
RLC.

VI. THEORETICAL ANALYSIS
In DSTO, any incorrectness or conflicts among neighbor
nodes’ TOs would directly result in scheduling failure. More-
over, it must be ensured each node will always be able to
receive enough slot information from all of the neighbors
ranked higher than itself on its TOT. Otherwise, DSTO fails
to provide a complete schedule. In Subsection VI-A, we use
theoretical analysis to prove that DSTO can always com-
plete scheduling and provide collision-free slot allocation.
Furthermore, in Subsection VI-B, we analyze the complexity
of DSTO in terms ofmessage transmissions and computation.

A. DSTO’s CORRECTNESS
Theorem 1: DSTO produces collision-free slot alloca-

tion for all nodes in the network. In other words, each node
has a unique time slot within a two-hop distance.
Proof: The following lemmas are to prove Theorem 1.
Lemma 1: Assuming that each node has a numerical

value unique inside its two-hop neighborhood, there are no
conflicts between nodes’ TOTs.
Proof: Let N be the number of nodes in the network and

the list P = (P1,P2 . . .PN) be the lists of priority values of
all nodes which satisfies:

P1 > P2 > P3 > . . . > PN−1 > PN (5)

It can easily be seen that all the TOs produced by individual
nodes are sub-lists of P. Thus, they retain the descending
property of P. This can prove that there would be no conflicts
between nodes’ TOs.

Lemma 2: Assuming that the network topology is stable
for a sufficient amount of time, each node is able to col-
lect enough information about neighbors’ slot assignment to
acquire a time slot at its turn in accordance with the its TOT.
Proof: In DSTO, there are two cases in which a node can

receive neighbors’ slot information.
• Case 1 (receiving aRL). After acquiring a time slot, node
u broadcasts RLs until all of its one-hop neighbors have
successfully confirmed their awareness about its slot

assignment with an RLC or FW. A list of the neighbors
that have responded, or R(u) is piggy backed inside the
outgoing RLs. If a neighbor finds its ID not listed on
R(u), it has to respond again to u’s RLs. Therefore, in this
case, it is guaranteed all neighbor nodes of one-hop
distance will be aware of each other’s slot information.

• Case 2 (receiving a FW). Upon the reception of a RL,
node u checks if it has to notify one of its one-hop
neighbors, denoted v, that has not acquired a time slot
with a FW. If u sees that v has not been entirely aware
of slot information of u’s one-hop neighbors (or v’s
two-hop neighbors) who have finished scheduling, or:{

SATu(u, x) > 0
SATu(v, x) = 0

∀x ∈ N1(u) && x /∈ N1(v) (6)

node u will send FWs until receiving a confirmation
from v. Therefore, in this case, it is also guaranteed that
neighbor nodes of two-hop distance will be aware of
each other’s slot information. Thus, we can prove that
each node is always able to collect enough neighbors’
slot information.

By Lemma 1 and 2, we can prove that there are no conflicts
between TOs created by individual nodes and each node
will always receive enough neighbors’ slot information. This
ensures that each node can follow its TO to choose a time slot
that has not been used by its neighbors within two hops. �

B. DSTO’s COMPLEXITY
Theorem 2: Assuming that the maximum delay of any

messages is limited by a constant, DSTO’s message com-
plexity is O(δ), where δ is the maximum size of two-hop
neighborhoods.
Proof: In DSTO, each node has to send O(1) messages

in each of the following cases: announcing its slot assign-
ment, receiving a release message, and receiving a forward
message. All of these cases result from the node’s and its
neighbors’ slot assignments. Since there are a maximum of
δ nodes in any two-hop neighborhood and each node only
performs slot assignment once, the expected message com-
plexity is O(δ). �

Theorem 3: The expected internal computational com-
plexity to run DSTO is O(δ1), where δ1 is the maximum size
of one-hop neighborhoods and 0 < δ1 ≤ δ.
Proof: Our algorithm is divided into two phases, which

are NDP and SCP. In the NDP (Algorithm 1) and the SCP
(Algorithms 2 and 3). In both phases, there are no nested
loops through out both algorithms 2 and 3 and all of the
loops go through only the nodes’ lists of one-hop neighbors,
the complexity can be expected as O(δ1) as well. �

Theorem 4: Let N be the number of nodes in the net-
work. Assuming that the maximum delay of any messages is
limited by a constant with c’s being the maximum number
of retransmission attempts to deliver a message successfully
(c ≥ 0) and dtx’s being the maximum one-way transmission

VOLUME 8, 2020 145325

T.-T. Nguyen et al.: Distributed TDMA Scheduling Algorithm Using Topological Ordering for WSNs

FIGURE 5. An example network for the worst-case scenario.

delay of any message. DSTO’s worst-case running time:

Tmax = dtx ·
[
(5c+ 1)− c · d[

]N − 3
2
e

]
(7)

Proof:As stated earlier, in DSTO, a node has to wait for all
neighbors ranked higher in its two-hop neighborhood to finish
their scheduling before its can acquire a time slot. Also, these
neighbors also need to wait for their neighbors in the same
manner. In the worst-case scenario, the network forms a line
topology as shown in Fig. 5. In this case, nodes A3. . .AN−2
all have 4 neighbors more than those of A1, A2, AN−1 and
AN , which are 2, 3, 3, 2, respectively. Therefore, there is
possibility that AN−2 has the highest priority in the network
and that node A1 has to wait for node AN−2 and several nodes
between them. From Section V, we know that some of these
nodes including AN−2 have to perform slot allocation and
notify its neighbors with RL messages, while the others have
to forward neighbors’ slot information to another node with
FWmessages. Thus, we call n1 the number of nodes that send
RL messages and n2 the number of nodes send FW messages
(0 ≤ n1, n2 ≤ N − 3).

Now, assuming amount of time needed for internal calcu-
lation is negligible (Theorem 3), the maximum running time
can be calculated as

Tmax = n1 · dtx + n2 · dtx (8)

However, messages may require retransmission to be deliv-
ered successfully. As introduced in Subsection V-C, nodes
wait for 4dtx and 5dtx before retransmitting RL and FW
messages, respectively. Therefore, if c is maximum number
of retransmission attempts, the running time becomes

Tmax = n1 · (4c+ 1) · dtx + n2 · (5c+ 1) · dtx (9)

Moreover, since a node’s forwarding is only triggered by
another neighbor’s RL message, the number of forwarding
nodes is always equal or smaller than that of releasing nodes.
Additionally, there are N − 3 hops between AN−2 and A1,
we can establish this as an optimization problem.

Maximize f (x)=n1 · (4c+ 1) · dtx+n2 · (5c+ 1) · dtx (10)

Subject to the constrains n2 ≤ n1 (11)

n1 + n2 = N − 3 (12)

By substituting n2 = N − 3− n1 into f (x), we have:

f (x) = (5c+ 1) · dtx − c · dtx · n1 (13)

It is obvious that, for f (x) to maximize, we need n1 to be
minimum. From equation (12) and (13), we can easily find
that

n1 ≥
N − 3

2
(14)

Because n1 ∈ N, we have

n1min = d[
]N − 3

2
e (15)

As a result, the maximum running time is

Tmax = dtx ·
[
(5c+ 1)− c · d[

]N − 3
2
e

]
. (16)

�

VII. PERFORMANCE EVALUATION
In this section, we study the performance of DSTO in terms
of running time, message overhead, slot assignment, and
numbers of trials (rounds) when being applied to WSNs.
To study the performance of DSTO over that of DRAND [22]
and DTSS [20], we set up the simulations in OPNETNetwork
Modeler. The number of nodes in a network ranges from 50 to
250 and all nodes are deployed randomly in an area of 300×
300m2. The communication range is set at 40m. This config-
uration leads to two-hop neighborhood sizes’ ranging from
8 to 60. This simulation setup aims to prove the effectiveness
of DSTO on both small- and large-scale wireless networks
with different neighborhood densities.

A. RUNNING TIME
Fig. 6(a) plots the average running time according to the
neighborhood size (node density) to compare the trends of
results from three algorithms. It can be seen that DSTO
performs better than DRAND by 30 to 60%. This is because,
in DSTO, nodes assign slots in turn according to its TOT, and
as soon as they have received enough TI from their neighbors.
The number of message collisions between neighbor nodes
is also reduced, which leads to less execution time wasted
on unnecessary retransmissions. DRAND, on the other hand,
is prone to collisions due to its random nature, which also
leads to significant variations of simulation results. Further-
more, Fig. 6(b) displays the variations of slot-assigning time
by nodes according to network sizes. In DSTO, the duration
from the first node that assigns its slot to the last in each net-
work is remarkably lower than that of DRAND. In DRAND,
nodes wait and request at a random time and especially they

145326 VOLUME 8, 2020

T.-T. Nguyen et al.: Distributed TDMA Scheduling Algorithm Using Topological Ordering for WSNs

FIGURE 6. (a) Average running time to acquire a slot and (b) Running time of individual nodes to acquire a slot.

may fail several times before acquiring a time slot. More
importantly, when a node fails, it does not only waste its
own time but also time of its one-hop neighbors that has
sent grant to it and their one-hop neighbors as well, because
DRAND nodes can only send grants to only one node at any
moment.

On the contrary, DSTO’s performance is inferior to that
of DTSS in both Fig. 6(a) and (b). Since DTSS nodes are
time-synchronized, they can save a significant amount of time
spent on waiting. However, it is important to note that in
the case of DTSS, the actual running time needed will be
higher than what is shown in the figures, as extra running
time needs to be spent on time-synchronization before the
scheduling phase’s being able to start. Moreover, errors in
time-synchronization may result in more delay or in the worst
case, scheduling failure.

B. MESSAGE TRANSMISSIONS
Fig. 7(a) compares the trends of average message transmis-
sions of three algorithms as the neighborhood size increases.
It proves DSTO’s effectiveness on reducing the number of
generated messages. In terms of average numbers of mes-
sage transmissions, DSTO outperforms DTSS by 25-30%
and DRAND by 30-40% in most cases. Moreover, the out-
put variance’s size of DRAND can be higher than that of
DSTO by 3-4 times in some cases. By employing a TO,
DSTO allows nodes to assign time slots in an orderly fashion,

which helps reduce the number of message losses due to
collisions, whereas DRAND nodes have to compete with
each other and thus generate more message losses. In DTSS,
each node has to, at least, request twice and as a consequence,
response twice to each of its one-hop neighbors. This leads
to a high amount of message overhead and thus high energy
consumption.

Fig. 7(b) shows the number of message transmissions by
individual nodes in five networks of 50 – 250 nodes. The
differences between DSTO and the other algorithms are more
noticeable as the network size increases. In the network
of 250 nodes, 50% of nodes in DSTO, DRAND and DTSS
transmitted more than 48, 63 and 57 messages, respectively.
The node that had to transmit the most in DSTO accounts for
80 messages, while those in DRAND and DTSS generated
roughly 190 and 130 messages.

Fig. 8 illustrates the total number of message transmis-
sions according to the network size. Similar to the previous
result, it can be observed that there are only small differences
between the results of DSTO and the others in low-density
networks (50 – 100 nodes), whereas high density networks
(150 – 250 nodes) have significant differences due to high
possibility of collisions. DSTO can save up to 35 and 25% of
total messages compared to DRAND andDTSS, respectively,
as the network density increases. This proves that Topological
Ordering is effective in terms of avoiding collisions between
neighbors.

VOLUME 8, 2020 145327

T.-T. Nguyen et al.: Distributed TDMA Scheduling Algorithm Using Topological Ordering for WSNs

FIGURE 7. (a) Average number of message transmissions, (b) Average number of message transmissions by individual nodes.

FIGURE 8. Total number of message transmissions by networks.

C. SLOT ALLOCATION
Fig. 9 shows the number of used slots in each frame of three
algorithms. In both DSTO and DRAND, when choosing a
time slot, nodes always try to pick the minimum slot that
does not cause collisions with any of its neighbors within
a two-hop distance. Therefore, we can see only small dif-
ferences between two algorithms. However, in the case of
DTSS, the frame size must be set before the scheduling starts.
In this simulation, we choose the frame of 60 slots, which is

FIGURE 9. Maximum number of assigned slots.

equal to the maximum neighborhood size. Because any frame
shorter than this would result in an incomplete scheduling
phase, in which there are nodes that cannot assign a slot.
Moreover, it can be seen that DRAND appears to have used 2,
5 and 4 slots more than DSTO in 150-node, 200-node and
250-node networks, respectively. DSTO frames are 60-90%
shorter than those of DTSS in all simulations.

Fig. 10 shows the slot distributions and CDFs for networks
of 50, 150 and 250 nodes, respectively. DTSS has poor

145328 VOLUME 8, 2020

T.-T. Nguyen et al.: Distributed TDMA Scheduling Algorithm Using Topological Ordering for WSNs

FIGURE 10. Assigned slot distributions and CDFs for networks.

FIGURE 11. Average number of trials (rounds) taken to allocate a time
slot.

channel utilization rates, especially in cases of low-density
networks with a large proportion of unused slots. These slots
can certainly be reassigned to raise the channel utilization
rate. However, it would have to be a tradeoff as more running
time and message transmissions are needed.

D. NUMBER OF TRIALS (ROUNDS)
In this subsection, we compare the average number of trials
taken in order for each node to acquire a time slot. As men-
tioned earlier, in DRAND, at each round, each node plays a
lottery and if it loses, it has to wait before being allowed to
play again. Otherwise, if it wins, the node will start broad-
casting requests. Thus, we can consider each round is a trial.
When nodes lose the lottery or are rejected by their neighbors,

the trial is considered a failure resulting in waste of resources
such as time, message transmission and energy. The case is
similar for DTSS. When a node randomly chooses a slot that
has been blocked or taken by one of its neighbor, it has to start
again from the beginning.

Fig. 11 shows that in DRAND, each node, in average, has
to try and fail several times before being able to acquire a slot.
In DTSS, the numbers of trials are significantly smaller due
to the large frame size. On the other hand, in DSTO, since the
scheduling order has been decided beforehand, each node has
to try only once when they have received enough information
on neighbors’ slot assignments.

VIII. CONCLUSION
In this paper, we introduce the concept of Topological Order-
ing and use it to produce a scheduling order for WSNs.
We also propose a distributed TDMA scheduling algorithm
using Topological Ordering called DSTO. Our algorithm is
designed to be scalable in a fully distributed manner and to
reduce running time and message overhead, which is the key
to energy preservation. From theoretical analysis, the mes-
sage and internal computation complexities are O(δ) and
O(δ1) and, where δ and δ1 and is the maximum two- and
one-hop neighborhood sizes, respectively. This helps prove
the algorithm’s scalability. Moreover, we thoroughly evaluate
the performance of DSTO in various aspects and compare it
to those of two scheduling algorithms called, DRAND and
DTSS. The evaluation results confirm the validity and proves
DSTO’s effectiveness in terms of scheduling time and the

VOLUME 8, 2020 145329

T.-T. Nguyen et al.: Distributed TDMA Scheduling Algorithm Using Topological Ordering for WSNs

number of generated messages regardless of the network size
and density.

ACKNOWLEDGMENT
A preliminary version of this article was presented at the 28th
International Conference on Computer Communications and
Networks (ICCCN), Spain, July 2019 [37].

REFERENCES
[1] L. Lombardo, S. Corbellini, M. Parvis, A. Elsayed, E. Angelini, and

S. Grassini, ‘‘Wireless sensor network for distributed environmental mon-
itoring,’’ IEEE Trans. Instrum. Meas., vol. 67, no. 5, pp. 1214–1222,
May 2018.

[2] G. Xu, W. Shen, and X. Wang, ‘‘Applications of wireless sensor networks
in marine environment monitoring: A survey,’’ Sensors, vol. 14, no. 9,
pp. 16932–16954, Sep. 2014.

[3] A. J. Watt, M. R. Phillips, C. E.-A. Campbell, I. Wells, and S. Hole,
‘‘Wireless sensor networks formonitoring underwater sediment transport,’’
Sci. Total Environ., vol. 667, pp. 160–165, Jun. 2019.

[4] W. Yi, K. Lo, T. Mak, K. Leung, Y. Leung, and M. Meng, ‘‘A survey of
wireless sensor network based air pollution monitoring systems,’’ Sensors,
vol. 15, no. 12, pp. 31392–31427, Dec. 2015.

[5] D. Chen, Z. Liu, L. Wang, M. Dou, J. Chen, and H. Li, ‘‘Natural disaster
monitoring with wireless sensor networks: A case study of data-intensive
applications upon low-cost scalable systems,’’Mobile Netw. Appl., vol. 18,
no. 5, pp. 651–663, Oct. 2013.

[6] B. Rashid and M. H. Rehmani, ‘‘Applications of wireless sensor networks
for urban areas: A survey,’’ J. Netw. Comput. Appl., vol. 60, pp. 192–219,
Jan. 2016.

[7] M. Erdelj, M. Król, and E. Natalizio, ‘‘Wireless sensor networks andmulti-
UAV systems for natural disaster management,’’ Comput. Netw., vol. 124,
pp. 72–86, Sep. 2017.

[8] X. Hu, B. Wang, and H. Ji, ‘‘A wireless sensor network-based structural
health monitoring system for highway bridges,’’ Comput.-Aided Civil
Infrastruct. Eng., vol. 28, no. 3, pp. 193–209, Mar. 2013.

[9] M. Z. A. Bhuiyan, G. Wang, J. Wu, J. Cao, X. Liu, and T. Wang, ‘‘Depend-
able structural health monitoring using wireless sensor networks,’’ IEEE
Trans. Dependable Secure Comput., vol. 14, no. 4, pp. 363–376, Jul. 2017.

[10] M. Z. A. Bhuiyan, G. Wang, J. Cao, and J. Wu, ‘‘Deploying wireless
sensor networks with fault-tolerance for structural health monitoring,’’
IEEE Trans. Comput., vol. 64, no. 2, pp. 382–395, Feb. 2015.

[11] R. Vera-Amaro, M. E. Rivero-ángeles, and A. Luviano-Juárez, ‘‘Data col-
lection schemes for animal monitoring using WSNs-assisted by UAVs:
WSNS-oriented or UAV-oriented,’’ Sensors, vol. 20, no. 1, pp. 262–293,
2020.

[12] A. Naureen, N. Zhang, S. Furber, and Q. Shi, ‘‘A GPS-less localization and
mobility modelling (LMM) system for wildlife tracking,’’ IEEE Access,
vol. 8, pp. 102709–102732, 2020.

[13] J. G. A. Barbedo, L. V. Koenigkan, P. M. Santos, and A. R. B. Ribeiro,
‘‘Counting cattle in UAV images-dealing with clustered animals and ani-
mal/background contrast changes,’’ Sensors, vol. 20, no. 7, pp. 2126–2139,
2020.

[14] D. Kandris, C. Nakas, D. Vomvas, and G. Koulouras, ‘‘Applications of
wireless sensor networks: An up-to-date survey,’’ Appl. Syst. Innov., vol. 3,
no. 1, pp. 14–37, 2020.

[15] D. Thakur, Y. Kumar, A. Kumar, and P. K. Singh, Applicability of Wireless
Sensor Networks in Precision Agriculture: A Review, vol. 107, no. 1.
New York, NY, USA: Springer, 2019, doi: 10.1007/s11277-019-06285-2.

[16] J. A. Stankovic, ‘‘Research directions for the Internet of Things,’’ IEEE
Internet Things J., vol. 1, no. 1, pp. 3–9, Feb. 2014.

[17] L. Da Xu, W. He, and S. Li, ‘‘Internet of Things in industries: A survey,’’
IEEE Trans. Ind. Informat., vol. 10, no. 4, pp. 2233–2243, Nov. 2014.

[18] I. Rhee, A. Warrier, M. Aia, J. Min, andM. L. Sichitiu, ‘‘Z-MAC: A hybrid
MAC for wireless sensor networks,’’ IEEE/ACM Trans. Netw., vol. 16,
no. 3, pp. 511–524, Jun. 2008.

[19] A.Woo and D. E. Culler, ‘‘A transmission control scheme for media access
in sensor networks,’’ in Proc. MobiCom, 2001, pp. 221–235.

[20] A. Bhatia and R. C. Hansdah, ‘‘A distributed TDMA slot scheduling
algorithm for spatially correlated contention in WSNs,’’ Mobile Inf. Syst.,
vol. 2015, pp. 1–16, Mar. 2015.

[21] S. Ramanathan, ‘‘A unified framework and algorithm for (T/F/C) DMA
channel assignment in wireless networks,’’ in Proc. INFOCOM, 1997,
vol. 2, no. 2, pp. 900–907.

[22] I. Rhee, A. Warrier, J. Min, and L. Xu, ‘‘DRAND: Distributed randomized
TDMA scheduling for wireless ad hoc networks,’’ IEEE Trans. Mobile
Comput., vol. 8, no. 10, pp. 1384–1396, Oct. 2009.

[23] Y. Li, X. Zhang, J. Zeng, Y. Wan, and F. Ma, ‘‘A distributed TDMA
scheduling algorithm based on energy-topology factor in Internet of
Things,’’ IEEE Access, vol. 5, pp. 10757–10768, 2017.

[24] Y. Li, X. Zhang, T. Qiu, J. Zeng, and P. Hu, ‘‘A distributed TDMA schedul-
ing algorithm based on exponential backoff rule and energy-topology
factor in Internet of Things,’’ IEEE Access, vol. 5, pp. 20866–20879, 2017.

[25] K. Sato and S. Sakata, ‘‘A power-efficient distributed TDMA scheduling
algorithmwith distance-measurement for wireless sensor networks,’’Wire-
less Pers. Commun., vol. 75, no. 2, pp. 1511–1528, Mar. 2014.

[26] G. Chakraborty, ‘‘Genetic algorithm to solve optimum TDMA transmis-
sion schedule in broadcast packet radio networks,’’ IEEE Trans. Commun.,
vol. 52, no. 5, pp. 765–777, May 2004.

[27] C. Y. Ngo and V. O. K. Li, ‘‘Centralized broadcast scheduling in packet
radio networks via genetic-fix algorithms,’’ IEEE Trans. Commun., vol. 51,
no. 9, pp. 1439–1441, Sep. 2003.

[28] S. Ramanathan and E. L. Lloyd, ‘‘Scheduling algorithms for multi-hop
radio networks,’’ IEEE/ACMTrans. Netw., vol. 1, no. 2, pp. 166–177, 1993.

[29] W. Osamy, A. A. El-Sawy, and A.M. Khedr, ‘‘Effective TDMA scheduling
for tree-based data collection using genetic algorithm in wireless sensor
networks,’’ Peer-Peer Netw. Appl., vol. 13, no. 3, pp. 796–815, May 2020.

[30] L. Bao and J. J. Garcia-Luna-Aceves, ‘‘A new approach to channel access
scheduling for ad hoc networks,’’ in Proc. MobiCom, 2001, pp. 210–221.

[31] R. Rozovsky and P. R. Kumar, ‘‘SEEDEX: A MAC protocol for ad hoc
networks,’’ in Proc. 2nd ACM Int. Symp. Mobile Ad Hoc Netw. Comput.
(MobiHoc), vol. 7, 2001, pp. 67–75.

[32] C. Zhu and M. S. Corson, ‘‘A five-phase reservation protocol (FPRP) for
mobile ad hoc networks,’’Wireless Netw., vol. 7, no. 4, pp. 371–384, 2001.

[33] B. Dezfouli, M. Radi, K. Whitehouse, S. A. Razak, and T. Hwee-Pink,
‘‘DICSA: Distributed and concurrent link scheduling algorithm for data
gathering in wireless sensor networks,’’ Ad Hoc Netw., vol. 25, pp. 54–71,
Feb. 2015.

[34] H. Lakhlef, M. Raynal, and F. Taïani, ‘‘Vertex coloring with communica-
tion constraints in synchronous broadcast networks,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 30, no. 7, pp. 1672–1686, Jul. 2019.

[35] M. S. Batta, S. Harous, L. Louail, and Z. Aliouat, ‘‘A distributed TDMA
scheduling algorithm for latency minimization in Internet of Things,’’ in
Proc. IEEE Int. Conf. Electro Inf. Technol. (EIT), Brooklings, SD, USA,
May 2019, pp. 108–113.

[36] M. S. Batta, Z. Aliouat, and S. Harous, ‘‘A distributedweight-based TDMA
scheduling algorithm for latency improvement in IoT,’’ in Proc. IEEE 10th
Annu. Ubiquitous Comput., Electron. Mobile Commun. Conf. (UEMCON),
New York, NY, USA, Oct. 2019, pp. 0768–0774.

[37] T.-T. Nguyen, L.-A. Phan, T. Kim, T. Kim, J. Lee, and J. Ham, ‘‘Dis-
tributed TDMA scheduling using topological ordering in wireless sensor
networks,’’ in Proc. 28th Int. Conf. Comput. Commun. Netw. (ICCCN),
Jul. 2019, pp. 1–2.

THANH-TUNG NGUYEN received the B.S.
degree in electronics and telecommunications
from the University of Engineering and Technol-
ogy, Vietnam National University, in 2017. He is
currently pursuing the M.S. degree in communi-
cation and information engineering with Chung-
buk National University, South Korea, under
the Korean Government Scholarship Programme
(KGSP). His research interests include the Inter-
net of Things, cloud/edge computing, open-source

software, and ad-hoc networks.

145330 VOLUME 8, 2020

http://dx.doi.org/10.1007/s11277-019-06285-2

T.-T. Nguyen et al.: Distributed TDMA Scheduling Algorithm Using Topological Ordering for WSNs

TAEJOON KIM (Member, IEEE) received the
B.S. degree in electronics engineering fromYonsei
University, Seoul, South Korea, in 2003, and the
Ph.D. degree in electrical engineering from the
Korea Advanced Institute of Science and Tech-
nology (KAIST), Daejeon, South Korea, in 2011.
From 2003 to 2005, he was a Researcher with LG
Electronics, Seoul. From 2011 to 2013, he was a
Senior Researcher with ETRI, Daejeon. He is cur-
rently an Associate Professor with the School of

Information and Communication Engineering, Chungbuk National Univer-
sity, SouthKorea. His research interests include the analysis and optimization
of wireless networks and communication theory.

TAEHONG KIM (Member, IEEE) received the
B.S. degree in computer science from Ajou Uni-
versity, South Korea, in 2005, and the M.S. degree
in information and communication engineering
and the Ph.D. degree in computer science from
the Korea Advanced Institute of Science and
Technology (KAIST), in 2007 and 2012, respec-
tively. He worked as a Research Staff Member
with the Samsung Advanced Institute of Tech-
nology (SAIT) and the Samsung DMC Research

and Development Center, from 2012 to 2014. He also worked as a Senior
Researcher with the Electronics and Telecommunications Research Institute
(ETRI), South Korea, from 2014 to 2016. Since 2016, he has been an
Associate Professor with the School of Information and Communication
Engineering, Chungbuk National University, South Korea. His research
interests include edge computing, SDN/NFV, the Internet of Things, and
wireless sensor networks. He is also an Associate Editor of IEEE ACCESS.

VOLUME 8, 2020 145331

