
Distributed TDMA Scheduling Using Topological
Ordering in Wireless Sensor Networks

Thanh-Tung Nguyen, Linh-An Phan, Taejoon Kim, Taehong Kim*
School of Information and Communication Engineering

Chungbuk National University, Republic of Korea
{tungnt, linhan, ktjcc, taehongkim}@cbnu.ac.kr

JaeSeang Lee+, JaeHyun Ham+
The 2nd R&D Institute

Agency for Defense Development+
{jslee15, mjhham}@add.re.kr+

Abstract—TDMA protocols can provide a reliable, collision-
free data-transferring mechanism for wireless sensor networks.
However, it requires an effective scheduling (time slot assignment)
algorithm, which is a challenging issue, especially in wireless
multi-hop networks due to random-based competition. In this
paper, we propose DSTO, a distributed TDMA scheduling
algorithm using Topological Ordering (TO). DSTO aims to reduce
conflict of scheduling time among neighbor nodes by creating a
Topological Order with local neighborhood size as the main
priority factor. We implemented DSTO on OPNET Network
Simulator and proved its effectiveness compared to DRAND in
terms of running time and message overheads.

Keywords—distributed, scheduling algorithm, DSTO,
topological ordering, wireless sensor networks

I. INTRODUCTION
In contrast to CSMA protocols’ inefficient channel

utilization at low loads, TDMA protocols are popularly used in
wireless sensor networks due to its collision-free and reliable
data transfer. However, TDMA protocol requires time
synchronization and transmission scheduling to guarantee
reliable data transfer, which are challenging issues especially in
wireless multi-hop networks. Among diverse suggestions,
DRAND [1] and its variants [2], [3] are one of the
representatives for TDMA scheduling algorithms due to the
fully distributed design. In DRAND, nodes work in rounds. In
each round (or trial), if a node wins the lottery, it can broadcast
a REQUEST to all of its one-hop neighbors. If all the neighbors
respond with a GRANT, the node can pick a time slot. On the
other hand, if any of the neighbors replies with a REJECT, the
round is considered failed and the node has to start again from
the beginning in the next round. In other words, despite having
received GRANTs from almost all neighbors, a trial is still
considered unsuccessful once the node receives even just only
one REJECT. Therefore, this is the downside of DRAND which
leads to wasted resources. Thus, to overcome the disadvantages
of slot assignment using random-based competition, in this
paper, we propose a new algorithm in which each node waits
until its turn, which has been decided based on topology
information, to reserve a slot. This ensures that in each two-hop
neighborhood, there can be only one node claiming a time slot

at any time, which reduces collisions and conflicts between
neighbor nodes. Therefore, nodes do not have to have to go
through several trials and failures. They collect information and
act only after having collected enough of it.

II. SCHEDULING USING TOPOLOGICAL ORDERING

A. Topological Ordering and Slot-awareness Table
We assume that each node obtains Topological Ordering

(TO) information from neighbors within two-hop range, which
consists of their number of neighbors (NB) and random value
(RV), through exchanging of HELLO messages during the
Neighbor Discovery Phase (NDP). Each node then determines a
scheduling order for itself and nodes inside its two-hop
neighborhood based on the collected information. Among
neighboring nodes, one will perform slot assignment first if it
has 1) the highest NB and 2) the highest RV in the case where
there are nodes with the same NB. During the Scheduling Phase
(SP), to follow the topological order, a node A collects and
stores its neighborhood’s slot information into a Slot-awareness
Table (SAT), denoted SA, in which SA(u, v) = a (� a > 0) that a
node u is aware that another node v has taken time slot a. Fig. 1
shows an example of applying TO to a network of 5 nodes. Node
A’s TO Table is created after the NDP ends and this table’s order
is also the scheduling order in which A is the first and followed
by C. Furthermore, A’s SAT is constantly updated during SP so
A can be aware of neighbors’ slot as well as their awareness. For
example, in A’s SAT, SA(D, E) = 3 as A knows that D is aware
that E has selected slot 3.

B. Scheduling Algorithm using Topological Ordering
As stated earlier in the previous subsection, after finishing

NDP, each node possesses a TO Table and will act accordingly
to this table during the SP. Fig. 2 shows the scheduling algorithm
of each node in the network. At the beginning of this stage, node
A is at the top of its TO Table and automatically assigns its time
slot and broadcasts one-hop release messages which carry the
information about its slot. Information including 1) the list of
one-hop neighbors that have responded to A, denoted RA, and 2)
the list of one-hop neighbors of A that have assigned their slot
will also be piggy-backed inside the message as well if they
exist. Then it waits for all of the one-hop neighbors’ responses
before returning to idle-listening state. On the other hand, in the
case where A is not currently at the top of the TO Table, it enters
the idle-listening state awaiting for messages sent from its one-
hop neighbors. Upon receipt of a release message from a
neighbor node B, node A first updates its SAT according to the
information contained in the message and checks if it has been
popped up to the top of the list (as one of its neighbor had
finished slot assignment earlier). If it has, it performs exactly as

Fig. 1. Example of Slot Awareness Table and Topological Ordering Table

978-1-7281-1856-7/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 11,2025 at 14:14:50 UTC from IEEE Xplore. Restrictions apply.

above-mentioned steps to assign a time slot. Otherwise, node A
checks if it needs to confirm to node B on the receipt of this
message and forward information contained inside the message
to one of its one-hop neighbors, denoted C. Depending on the
result of the check, A will send either a release-confirmation or
a forward, which serves as a confirmation to B as well. Node A
only sends a forward if the latter or both of the following
conditions is satisfied: 1) A � RB (in this case, A’s forward
message can also serve as a release-confirmation for B); 2) SA(A,
x) > 0 and SA(C, x) = 0 (� x � {A’s one-hop neighbors} & x ��
{C’s one-hop neighbors}). Once these conditions are both not
met, A will stops sending forward messages to node C. Lastly,
in another case where node A receives a forward message from
neighbor node B with itself as a designated destination, it
updates the SAT according to the information carried by that
message and sends one forward-confirmation back to B.

III. PERFORMANCE EVALUATION
To study the performance of DSTO over DRAND [1], we

use the OPNET Network Simulator. The number of nodes in a
network ranges from 50 to 250 and all nodes are deployed
randomly in an area of 300 x 300 m2, which makes two-hop
neighborhood sizes’ range from 8 to 60. Fig. 3 shows that
DSTO’s average running time performance is 30% to 70%
better than that of DRAND. In terms of message transmissions
required, our algorithm generates less messages than DRAND
by 20% to 40%, which is shown in Fig. 4. This is because in
DRAND, nodes must compete in several rounds before being
able to claim a slot, which increases running time and generates
more messages than necessary. Whereas, in our algorithm,
nodes collect information and claim a slot only at its turn,

reducing collisions with their neighbors. Furthermore, because
of DRAND’s random nature, there are significant output
variations as the neighbor density increases. This is not the case
for our algorithm. Because DSTO mainly employs Topological
Ordering, so it yields similar or only slightly different outcomes
in most cases. Additionally, Fig. 5 shows that in DSTO, nodes
wait only try once to pick a time slot at its turn. On the other
hand, DRAND nodes try and fail several times before they can
secure a slot, which leads to longer running time and more
energy wasted.

IV. CONCLUSION
This paper proposes the Topological Ordering based TDMA

scheduling algorithm to decide the scheduling order of each
node in a fully distributed manner as well as to reduce the
running time and message overheads required to successfully
allocate the time slots. The evaluations prove that the DSTO
provides better performance than DRAND in respect of
scheduling overhead and efficiency. In the future work, we plan
to verify the effectiveness of the proposed algorithm through
diverse performance comparison and mathematical analysis.

ACKNOWLEDGEMENT
This work has been supported by the Small-scale Mobile

Ad-hoc Network with Bio-networking Technology project of
Agency for Defense Development (UD170094ED)

REFERENCES

[1] I. Rhee, A. Warrier, J. Min and L. Xu, "DRAND: Distributed Randomized

TDMA Scheduling for Wireless Ad Hoc Networks," IEEE Transactions
on Mobile Computing, vol. 8, no. 10, pp. 1384-1396, Oct. 2009.

[2] Y. Li, X. Zhang, T. Qiu, J. Zeng and P. Hu, "A Distributed TDMA
Scheduling Algorithm Based on Exponential Backoff Rule and Energy-
Topology Factor in Internet of Things," IEEE Access, vol. 5, pp. 20866 -
20879, Sep. 2017.

[3] K. Sato and S. Sakata, "A Power-Efficient Distributed TDMA Scheduling
Algorithm with Distance-Measurement for Wireless Sensor Networks,"
Wireless Personal Communications, vol. 75, no. 2, p. 1511–1528, Mar.
2014.

a forward

Ordering CheckSlot assigning

Broadcast one-hop releases until
all neighbors have confirmed Idle-listening

Msg received?Update Slot Awareness
Table

Neighbor Discovery and Topological
Ordering Calculation

Check last
message's type

Send a forward

Necessary
to forward and

confirm?
Send a forward-

confirmation to sender

Send a release-confirm

C1
C2

C3

C1: Node has the highest priority in its two-hop neighborhood
C2: C1 is not met and node has received a message before Ordering
Check
C3: C1 and C2 are not met.

Release

Forward

Yes No

a release-
confirmation

Fig. 2. Scheduling Algorithm's flowchart

Fig. 3. Average running time per node for time slot assignment
N eighborhood Size

Ru
nn

in
g

Ti
m

e
(s

)

Fig. 4. Average message transmissions needed for time slot assignment
N eig h bo rho o d Size

N
um

be
r o

f M
es

sa
ge

Tr

an
sm

is
si

on
s

Fig. 5. Average numbers of trials (rounds) needed for slot assignment

Total network size

A
ve

ra
ge

 n
um

be
r o

f t
ra

ils

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 11,2025 at 14:14:50 UTC from IEEE Xplore. Restrictions apply.

